## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 9,10-Dioxo-9,10-dihydroanthracene-1,4diyl diacetate

### Jing-Jing Zhang,<sup>a</sup> Cai-Xia Yin<sup>a</sup>\* and Fang-Jun Huo<sup>b</sup>

<sup>a</sup>Institute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of Education Ministry, University of Shanxi, Taiyuan, Shanxi 030006, People's Republic of China, and <sup>b</sup>Research Institute of Applied Chemistry, University of Shanxi, Taiyuan, Shanxi 030006, People's Republic of China Correspondence e-mail: yincx@sxu.edu.cn

Received 12 March 2013; accepted 18 April 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.152; data-to-parameter ratio = 11.9.

In the title compound,  $C_{18}H_{12}O_6$ , the anthraquinone ring system is nearly planar [maximum deviation = 0.161 (3) Å] and both acetate groups are located on the same side of the ring plane. A supramolecular architecture arises in the crystal owing to  $\pi$ - $\pi$  stacking between parallel benzene rings of adjacent molecules [centroid–centroid distance = 3.883 (4) Å] and weak intermolecular C–H···O hydrogen bonding.

#### **Related literature**

For applications of the title compound, see: Mal *et al.* (2007). For related compounds, see: Gianneschi *et al.* (2005); Thomas (2007); Lee & Lin (2008); Han *et al.* (2009, 2010); Lusby (2012).



## Experimental

| Crystal data        |                                  |
|---------------------|----------------------------------|
| $C_{18}H_{12}O_{6}$ | c = 9.902 (8) Å                  |
| $M_r = 324.28$      | $\alpha = 73.257 \ (16)^{\circ}$ |
| Triclinic, P1       | $\beta = 79.986 \ (14)^{\circ}$  |
| a = 8.208 (7)  Å    | $\gamma = 80.770 \ (14)^{\circ}$ |
| b = 9.730 (8) Å     | $V = 740.7 (10) \text{ Å}^3$     |
|                     |                                  |

| Z = 2                        |
|------------------------------|
| Mo $K\alpha$ radiation       |
| $\mu = 0.11 \text{ mm}^{-1}$ |

#### Data collection

| Bruker SMART 1000 CCD area-                |
|--------------------------------------------|
| detector diffractometer                    |
| Absorption correction: multi-scan          |
| (SADABS; Bruker, 2001)                     |
| $T_{\rm min} = 0.978, T_{\rm max} = 0.987$ |

#### Refinement

D

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 219 parameters $wR(F^2) = 0.152$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.25$  e Å $^{-3}$ 2610 reflections $\Delta \rho_{min} = -0.20$  e Å $^{-3}$ 

## Table 1 Hydrogen-bond geometry (Å, °).

| $-H \cdot \cdot \cdot A$ | D-H | $H \cdots A$ | $D \cdots A$ |  |
|--------------------------|-----|--------------|--------------|--|
|                          |     |              |              |  |

| $C18-H18A\cdots O2^{i}$ | 0.96          | 2.51    | 3.425 (4) | 159 | - |
|-------------------------|---------------|---------|-----------|-----|---|
| Symmetry code: (i) $-x$ | +3, -y + 1, - | -z + 1. |           |     |   |

T = 296 K

 $R_{\rm int} = 0.023$ 

 $0.20 \times 0.15 \times 0.12 \text{ mm}$ 

4006 measured reflections 2610 independent reflections

1616 reflections with  $I > 2\sigma(I)$ 

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (grant Nos. 21072119, 21102086), Shanxi Provincial Natural Science Foundation (grant No. 2012021009–4), Shanxi Province Foundation for Returnee (grant No. 2012–007), the Taiyuan Technology star special (grant No. 12024703) and CAS Key Laboratory of Analytical Chemistry for Living Biosystems Open Foundation (grant No. ACL201304).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5688).

#### References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gianneschi, N. C., Masar, M. S. & Mirkin, C. A. (2005). Acc. Chem. Res. 38, 825–837.
- Han, Y.-F., Jia, W.-G., Yu, W.-B. & Jin, G.-X. (2009). Chem. Soc. Rev. 38, 3419–3434.
- Han, Y.-F., Li, H. & Jin, G.-X. (2010). Chem. Commun. 46, 6879-6890.
- Lee, S. J. & Lin, W. (2008). Acc. Chem. Res. 41, 521-537.
- Lusby, P. J. (2012). Inorg. Chem. 108, 292-314.
- Mal, D., Ray, S. & Sharma, I. J. (2007). J. Org. Chem. 72, 4981-4984.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thomas, J. A. (2007). Chem. Soc. Rev. 36, 856-868.



 $D = H \cdots A$ 

## supporting information

*Acta Cryst.* (2013). E69, o788 [https://doi.org/10.1107/S1600536813010635] 9,10-Dioxo-9,10-dihydroanthracene-1,4-diyl diacetate

## Jing-Jing Zhang, Cai-Xia Yin and Fang-Jun Huo

## S1. Comment

The title compound has symmetry space structure and obvious color. It can be used to synthesize various dyes and are common structural subunits of many biologically active quinonoids (Mal *et al.*, 2007). It also can be modified into synthetic dyes intermediates, 1,4-diamino anthraquinone. Its readily deprotection of acetate groups forms 1,4-dihydroxy-anthraquinone (1,4-DHA), which can be induced to self-assembly to form a metallo-supramolecular coordination polymers under certain condition (Gianneschi *et al.*, 2005; Thomas, 2007; Lee & Lin, 2008) and demonstrate good selectivity and binding for planar aromatic guests, small organic molecules and transitional metal ions, such as dichloromethane and iridium (Han *et al.*, 2009; Lusby, 2012; Han *et al.*, 2010)

The molecular conformation is illustrated in Fig. 1. In the title compound,  $C_{18}H_{12}O_6$ , the anthraquinone ring system is nearly planar [the maximum deviation being 0.161 (3) Å], both acetate groups are located on the same side of the ring plane. A three-dimensional supramolecular architecture arises in the crystal owing to  $\pi$ - $\pi$  stacking between centrosymmetrically related benzene rings [centroid-centroid distance 3.883 (4) Å] and weak intermolecular C—H···O hydrogen bondig.

### **S2. Experimental**

To a stirred solution of 1,4-dihydrory-9,10-anthraquinone (4.6 g, 19.1 mmoL) in CH<sub>2</sub>Cl<sub>2</sub> (50 ml), Ac<sub>2</sub>O (2 ml) and pyridine (one drop) were added. After the solution was stirred overnight at room temperature, it was evaporated under vacuum. The crude products were dissolved in water and then extracted with EtOAc. The combinded organic layer was washed with brine, and then dried with Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed under the reduced pressure and the residue was purified by column chromatography using petroleum ether/ethyl acetate ( $\nu/\nu$  2:1,  $R_f = 0.50$ ) as an eluent to afford 9,10-dioxo-9,10-dihydroanthracene-1,4-diyl diacetate as a white solid. Colorless single crystals were obtained from the ethyl acetate solution.

## **S3. Refinement**

All H atoms were initially lacated in a difference Fourier map. H atoms on  $Csp^3$  were treated as riding with C—H = 0.96 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$  of the parent atom. The H atoms on  $Csp^2$  were treated as riding with C—H = 0.93 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ .



## Figure 1

A view of the molecular structure of (I) with the atom-numbering scheme.

9,10-Dioxo-9,10-dihydroanthracene-1,4-diyl diacetate

Crystal data

 $\begin{array}{l} C_{18}H_{12}O_6\\ M_r = 324.28\\ Triclinic, P1\\ Hall symbol: -P1\\ a = 8.208 \ (7) \ Å\\ b = 9.730 \ (8) \ Å\\ c = 9.902 \ (8) \ Å\\ a = 73.257 \ (16)^\circ\\ \beta = 79.986 \ (14)^\circ\\ \gamma = 80.770 \ (14)^\circ\\ V = 740.7 \ (10) \ Å^3 \end{array}$ 

Z = 2 F(000) = 336  $D_x = 1.454 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1029 reflections  $\theta = 2.5-25.9^{\circ}$   $\mu = 0.11 \text{ mm}^{-1}$  T = 296 KBlock, colorless  $0.20 \times 0.15 \times 0.12 \text{ mm}$  Data collection

| Bruker SMART 1000 CCD area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2001)<br>$T_{min} = 0.978, T_{max} = 0.987$ | 4006 measured reflections<br>2610 independent reflections<br>1616 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.023$<br>$\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 2.2^{\circ}$<br>$h = -9 \rightarrow 9$<br>$k = -11 \rightarrow 9$<br>$l = -8 \rightarrow 11$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |
| Refinement on $F^2$<br>Least-squares matrix: full                                                                                                                                                                                                           | Secondary atom site location: difference Fourier map                                                                                                                                                                                                                    |
| $R[F^2 > 2\sigma(F^2)] = 0.049$<br>wR(F^2) = 0.152                                                                                                                                                                                                          | Hydrogen site location: inferred from<br>neighbouring sites                                                                                                                                                                                                             |
| S = 1.01                                                                                                                                                                                                                                                    | H-atom parameters constrained                                                                                                                                                                                                                                           |
| 2610 reflections                                                                                                                                                                                                                                            | $w = 1/[\sigma^2(F_o^2) + (0.0852P)^2]$                                                                                                                                                                                                                                 |
| 219 parameters                                                                                                                                                                                                                                              | where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                                                                          |
| 0 restraints                                                                                                                                                                                                                                                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                                                                                                                                                                     |
| Primary atom site location: structure-invariant                                                                                                                                                                                                             | $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$                                                                                                                                                                                                               |
| direct methods                                                                                                                                                                                                                                              | $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$                                                                                                                                                                                                              |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \sigma (F^2)$  is used only for calculating *R*-factors (gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x          | У            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|------------|--------------|--------------|-----------------------------|--|
| 01 | 0.6269 (2) | 0.7129 (2)   | 0.92996 (18) | 0.0591 (6)                  |  |
| O2 | 1.1612 (2) | 0.4505 (2)   | 0.66625 (19) | 0.0548 (5)                  |  |
| O3 | 0.5808 (2) | 0.92058 (19) | 0.69178 (18) | 0.0484 (5)                  |  |
| O4 | 0.7230 (2) | 1.0267 (2)   | 0.80172 (19) | 0.0571 (5)                  |  |
| 05 | 1.1375 (2) | 0.6552 (2)   | 0.42121 (16) | 0.0470 (5)                  |  |
| 06 | 1.3324 (2) | 0.7313 (2)   | 0.50884 (19) | 0.0557 (5)                  |  |
| C1 | 0.7353 (3) | 0.6484 (3)   | 0.8615 (2)   | 0.0402 (6)                  |  |
| C2 | 0.8032 (3) | 0.4978 (3)   | 0.9257 (2)   | 0.0396 (6)                  |  |
| C3 | 0.7287 (3) | 0.4235 (3)   | 1.0597 (3)   | 0.0495 (7)                  |  |
| H3 | 0.6371     | 0.4686       | 1.1067       | 0.059*                      |  |
| C4 | 0.7911 (4) | 0.2837 (3)   | 1.1216 (3)   | 0.0611 (8)                  |  |
| H4 | 0.7402     | 0.2340       | 1.2097       | 0.073*                      |  |
| C5 | 0.9294 (4) | 0.2166 (3)   | 1.0533 (3)   | 0.0622 (8)                  |  |
| H5 | 0.9717     | 0.1225       | 1.0965       | 0.075*                      |  |
| C6 | 1.0048 (3) | 0.2884 (3)   | 0.9218 (3)   | 0.0513 (7)                  |  |
| H6 | 1.0975     | 0.2428       | 0.8765       | 0.062*                      |  |

# supporting information

| C7   | 0.9425 (3) | 0.4288 (3) | 0.8570(2)  | 0.0391 (6) |  |
|------|------------|------------|------------|------------|--|
| C8   | 1.0286 (3) | 0.5067 (3) | 0.7161 (2) | 0.0397 (6) |  |
| C9   | 0.9476 (3) | 0.6507 (3) | 0.6424 (2) | 0.0368 (6) |  |
| C10  | 0.8044 (3) | 0.7199 (3) | 0.7110 (2) | 0.0368 (6) |  |
| C11  | 0.7303 (3) | 0.8527 (3) | 0.6356 (3) | 0.0404 (6) |  |
| C12  | 0.7934 (3) | 0.9195 (3) | 0.4973 (3) | 0.0499 (7) |  |
| H12  | 0.7422     | 1.0084     | 0.4494     | 0.060*     |  |
| C13  | 0.9328 (3) | 0.8533 (3) | 0.4309 (3) | 0.0499 (7) |  |
| H13  | 0.9762     | 0.8979     | 0.3381     | 0.060*     |  |
| C14  | 1.0076 (3) | 0.7220 (3) | 0.5014 (2) | 0.0401 (6) |  |
| C15  | 0.5922 (3) | 1.0057 (3) | 0.7771 (3) | 0.0452 (6) |  |
| C16  | 0.4227 (3) | 1.0665 (3) | 0.8308 (3) | 0.0611 (8) |  |
| H16A | 0.4327     | 1.1330     | 0.8834     | 0.092*     |  |
| H16B | 0.3629     | 0.9895     | 0.8918     | 0.092*     |  |
| H16C | 0.3634     | 1.1162     | 0.7518     | 0.092*     |  |
| C17  | 1.2978 (3) | 0.6659 (3) | 0.4340 (3) | 0.0429 (6) |  |
| C18  | 1.4156 (3) | 0.5881 (3) | 0.3400 (3) | 0.0576 (8) |  |
| H18A | 1.5278     | 0.6028     | 0.3427     | 0.086*     |  |
| H18B | 1.3903     | 0.6249     | 0.2441     | 0.086*     |  |
| H18C | 1.4044     | 0.4867     | 0.3726     | 0.086*     |  |
|      |            |            |            |            |  |

## Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | <i>U</i> <sup>12</sup> | <i>U</i> <sup>13</sup> | <i>U</i> <sup>23</sup> |
|-----|-------------|-----------------|-----------------|------------------------|------------------------|------------------------|
| 01  | 0.0493 (11) | 0.0585 (13)     | 0.0589 (12)     | 0.0042 (9)             | 0.0220 (9)             | -0.0221 (10)           |
| 02  | 0.0333 (10) | 0.0549 (12)     | 0.0680 (12)     | 0.0058 (9)             | 0.0123 (8)             | -0.0209 (9)            |
| O3  | 0.0339 (10) | 0.0549 (12)     | 0.0566 (11)     | 0.0094 (8)             | 0.0009 (8)             | -0.0273 (9)            |
| O4  | 0.0466 (11) | 0.0685 (14)     | 0.0596 (12)     | -0.0058 (10)           | 0.0038 (9)             | -0.0296 (10)           |
| 05  | 0.0340 (10) | 0.0652 (12)     | 0.0453 (10)     | -0.0015 (8)            | 0.0077 (7)             | -0.0302 (9)            |
| 06  | 0.0452 (11) | 0.0624 (13)     | 0.0653 (12)     | -0.0046 (9)            | -0.0026 (9)            | -0.0298 (10)           |
| C1  | 0.0283 (12) | 0.0511 (16)     | 0.0434 (14)     | -0.0036 (11)           | 0.0039 (10)            | -0.0219 (12)           |
| C2  | 0.0325 (13) | 0.0483 (16)     | 0.0408 (14)     | -0.0068 (11)           | -0.0009 (10)           | -0.0178 (11)           |
| C3  | 0.0435 (15) | 0.0585 (19)     | 0.0464 (15)     | -0.0107 (13)           | 0.0052 (11)            | -0.0182 (13)           |
| C4  | 0.066 (2)   | 0.064 (2)       | 0.0482 (16)     | -0.0156 (16)           | 0.0012 (14)            | -0.0086 (14)           |
| C5  | 0.065 (2)   | 0.0511 (19)     | 0.0637 (19)     | -0.0023 (15)           | -0.0097 (15)           | -0.0069 (14)           |
| C6  | 0.0441 (15) | 0.0508 (18)     | 0.0564 (17)     | 0.0030 (13)            | -0.0045 (12)           | -0.0162 (14)           |
| C7  | 0.0315 (13) | 0.0452 (15)     | 0.0429 (14)     | -0.0041 (11)           | -0.0026 (10)           | -0.0171 (11)           |
| C8  | 0.0275 (12) | 0.0465 (15)     | 0.0486 (14)     | 0.0001 (11)            | -0.0018 (10)           | -0.0226 (12)           |
| C9  | 0.0274 (12) | 0.0437 (15)     | 0.0425 (14)     | -0.0022 (10)           | 0.0013 (10)            | -0.0213 (11)           |
| C10 | 0.0284 (12) | 0.0454 (15)     | 0.0397 (13)     | -0.0009 (11)           | 0.0013 (10)            | -0.0215 (11)           |
| C11 | 0.0289 (13) | 0.0473 (16)     | 0.0471 (14)     | 0.0024 (11)            | 0.0023 (10)            | -0.0240 (12)           |
| C12 | 0.0510 (16) | 0.0488 (16)     | 0.0455 (15)     | 0.0042 (13)            | -0.0015 (12)           | -0.0140 (12)           |
| C13 | 0.0499 (16) | 0.0553 (18)     | 0.0388 (14)     | -0.0027 (13)           | 0.0054 (11)            | -0.0125 (12)           |
| C14 | 0.0287 (13) | 0.0532 (17)     | 0.0416 (14)     | -0.0038 (11)           | 0.0050 (10)            | -0.0238 (12)           |
| C15 | 0.0437 (16) | 0.0456 (16)     | 0.0422 (14)     | 0.0037 (13)            | 0.0030 (11)            | -0.0152 (12)           |
| C16 | 0.0473 (17) | 0.067 (2)       | 0.0661 (19)     | 0.0093 (15)            | 0.0079 (13)            | -0.0304 (15)           |
| C17 | 0.0333 (14) | 0.0476 (16)     | 0.0444 (14)     | 0.0007 (12)            | 0.0014 (11)            | -0.0137 (12)           |
| C18 | 0.0386 (15) | 0.071 (2)       | 0.0622 (18)     | 0.0051 (14)            | 0.0064 (12)            | -0.0307 (15)           |

Geometric parameters (Å, °)

| 01—C1      | 1.226 (3)   | С6—Н6         | 0.9300    |
|------------|-------------|---------------|-----------|
| O2—C8      | 1.227 (3)   | C7—C8         | 1.497 (3) |
| O3—C15     | 1.365 (3)   | C8—C9         | 1.489 (3) |
| O3—C11     | 1.402 (3)   | C9—C14        | 1.409 (3) |
| O4—C15     | 1.202 (3)   | C9—C10        | 1.424 (3) |
| O5—C17     | 1.366 (3)   | C10—C11       | 1.395 (3) |
| O5—C14     | 1.404 (3)   | C11—C12       | 1.384 (4) |
| O6—C17     | 1.199 (3)   | C12—C13       | 1.379 (3) |
| C1—C2      | 1.478 (4)   | C12—H12       | 0.9300    |
| C1—C10     | 1.504 (3)   | C13—C14       | 1.371 (4) |
| C2—C3      | 1.401 (3)   | C13—H13       | 0.9300    |
| C2—C7      | 1.403 (3)   | C15—C16       | 1,494 (3) |
| C3—C4      | 1.376 (4)   | C16—H16A      | 0.9600    |
| С3—Н3      | 0.9300      | C16—H16B      | 0.9600    |
| C4-C5      | 1 386 (4)   | C16—H16C      | 0.9600    |
| C4—H4      | 0.9300      | C17-C18       | 1494(3)   |
| C5—C6      | 1 379 (4)   | C18—H18A      | 0.9600    |
| C5—H5      | 0.9300      | C18—H18B      | 0.9600    |
| C6         | 1.387(3)    | C18—H18C      | 0.9600    |
| 00 07      | 1.567 (5)   |               | 0.9000    |
| C15—O3—C11 | 117.07 (19) | C9—C10—C1     | 119.7 (2) |
| C17—O5—C14 | 118.35 (18) | C12—C11—C10   | 121.9 (2) |
| O1—C1—C2   | 120.6 (2)   | C12—C11—O3    | 116.2 (2) |
| O1—C1—C10  | 121.2 (2)   | C10-C11-O3    | 121.8 (2) |
| C2-C1-C10  | 118.13 (19) | C13—C12—C11   | 119.5 (3) |
| C3—C2—C7   | 119.3 (2)   | C13—C12—H12   | 120.3     |
| C3—C2—C1   | 119.2 (2)   | C11—C12—H12   | 120.3     |
| C7—C2—C1   | 121.5 (2)   | C14—C13—C12   | 120.1 (2) |
| C4—C3—C2   | 120.0 (2)   | C14—C13—H13   | 119.9     |
| С4—С3—Н3   | 120.0       | C12—C13—H13   | 119.9     |
| С2—С3—Н3   | 120.0       | C13—C14—O5    | 116.3 (2) |
| C3—C4—C5   | 120.4 (3)   | C13—C14—C9    | 122.1 (2) |
| С3—С4—Н4   | 119.8       | O5-C14-C9     | 121.3 (2) |
| C5—C4—H4   | 119.8       | O4—C15—O3     | 122.9 (2) |
| C6—C5—C4   | 120.4 (3)   | O4—C15—C16    | 126.7 (2) |
| С6—С5—Н5   | 119.8       | O3—C15—C16    | 110.3 (2) |
| С4—С5—Н5   | 119.8       | C15—C16—H16A  | 109.5     |
| C5—C6—C7   | 120.0 (2)   | C15—C16—H16B  | 109.5     |
| С5—С6—Н6   | 120.0       | H16A—C16—H16B | 109.5     |
| С7—С6—Н6   | 120.0       | C15—C16—H16C  | 109.5     |
| C6—C7—C2   | 119.9 (2)   | H16A—C16—H16C | 109.5     |
| C6—C7—C8   | 119.3 (2)   | H16B—C16—H16C | 109.5     |
| C2—C7—C8   | 120.7 (2)   | 06—C17—O5     | 123.0 (2) |
| O2—C8—C9   | 122.9 (2)   | O6—C17—C18    | 127.4 (2) |
| O2—C8—C7   | 119.4 (2)   | O5—C17—C18    | 109.6 (2) |
| C9—C8—C7   | 117.76 (19) | C17—C18—H18A  | 109.5     |
|            | × /         |               |           |

## supporting information

| C14—C9—C10 | 117.6 (2)   | C17—C18—H18B  | 109.5 |
|------------|-------------|---------------|-------|
| C14—C9—C8  | 121.31 (19) | H18A—C18—H18B | 109.5 |
| C10—C9—C8  | 121.1 (2)   | C17—C18—H18C  | 109.5 |
| C11—C10—C9 | 118.8 (2)   | H18A—C18—H18C | 109.5 |
| C11—C10—C1 | 121.5 (2)   | H18B—C18—H18C | 109.5 |

Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H… <i>A</i> |
|-----------------------------|-------------|-------|-----------|-----------------------|
| C18—H18A····O2 <sup>i</sup> | 0.96        | 2.51  | 3.425 (4) | 159                   |

Symmetry code: (i) -x+3, -y+1, -z+1.