metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­{μ4-2-[(carb­­oxy­meth­yl)sulfan­yl]nicotinato-κ4O:O′:O′′:O′′′}copper(II)] trihydrate]

aJinhua Radio and Television University, Zhejiang 321022, People's Republic of China
*Correspondence e-mail: lwq8113@163.com

(Received 27 March 2013; accepted 8 April 2013; online 13 April 2013)

In the polymeric title complex, {[Cu(C8H5NO4S)(H2O)]·3H2O}n, the CuII cation is coordinated by one water mol­ecule and four carboxyl­ate O atoms from four 2-[(carb­oxy­meth­yl)sulfan­yl]nicotinate anions in a distorted square-pyramidal geometry. The 2-[(carb­oxy­meth­yl)sulfan­yl]nicotinate anion bridges four CuII cations, forming a two-dimensional polymeric complex parallel to the bc plane. In the crystal, O—H⋯O, O—H⋯N and O—H⋯S hydrogen bonds link the complex mol­ecules and lattice water mol­ecules into a three-dimensional supra­molecular architecture.

Related literature

For background to the 2-[(carb­oxy­meth­yl)sulfan­yl]nicotinato ligand, see: Wang & Feng (2010[Wang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o1298.]). For related compounds, see: Jiang et al. (2012[Jiang, X.-R., Wang, X.-J. & Feng, Y.-L. (2012). Inorg. Chim. Acta, 383, 38-45.]). For metal complexes with 2-mercaptonanicotinate ligands, see: Humphrey et al. (2006[Humphrey, S. M., Alberola, A., Gómez Garcíab, C. J. & Wood, P. T. (2006). Chem. Commun. pp. 1607-1609.]); Sun et al. (2011[Sun, D., Wang, D.-F., Han, X.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2011). Chem. Commun. pp. 746-748.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H5NO4S)(H2O)]·3H2O

  • Mr = 346.82

  • Monoclinic, P 21 /c

  • a = 9.940 (7) Å

  • b = 16.639 (9) Å

  • c = 7.876 (4) Å

  • β = 96.28 (5)°

  • V = 1294.8 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 296 K

  • 0.25 × 0.09 × 0.06 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.812, Tmax = 0.892

  • 20324 measured reflections

  • 2973 independent reflections

  • 2331 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.04

  • 2973 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.958 (2)
Cu1—O2i 1.9682 (19)
Cu1—O3ii 1.9687 (19)
Cu1—O4iii 1.9836 (19)
Cu1—O1W 2.171 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4Wiv 0.82 1.93 2.747 (4) 174
O1W—H1WB⋯O2Wiii 0.84 2.11 2.899 (4) 156
O2W—H2WA⋯O3Wv 0.83 2.05 2.843 (5) 157
O2W—H2WB⋯O4 0.84 2.26 2.911 (4) 135
O2W—H2WB⋯N1 0.84 2.56 3.253 (4) 141
O3W—H3WA⋯O3vi 0.82 2.40 3.110 (4) 146
O3W—H3WB⋯O2W 0.83 2.00 2.803 (5) 165
O4W—H4WB⋯S1vi 0.85 2.62 3.356 (4) 146
Symmetry codes: (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) -x+1, -y, -z+1; (vi) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-Carboxymethylsulfanylnicotinic acid is prepared from 2-mercaptonanicotinic acid (Wang & Feng, 2010). 2-Mercaptonanicotinic acid is a multifunctional ligand, and some complexes containing 2-mercaptonanicotinate ligand have been previously investigated (Humphrey et al., 2006; Sun et al., 2011).

The 2-carboxymethylsulfanylnicotinic acid is an interesting ligand because of its potential versatile coordinate behavior. Recently, only three metal compounds have been reported about 2-carboxymethylsulfanyl nicotinic acid (Jiang et al., 2012). Herein, we report the synthesis and structure of the title compound.

A perspective view of (I) is presented in Fig.1. The asymmetric unit consists of one CuII ion, one (C8H5NO4S)2- ligands, one coordinated water molecule, and three lattice water molecules. As shown in Fig. 2, each pair of Cu2+ ion is µ-linked by four carboxylic groups of the individual (C8H5NO4S)2- ligands with Cu···Cu distances of 2.6524 (15) Å. The (C8H5NO4S)2- ligands bridge adjacent dinuclear units in a head-to-tail fashion to form a two-dimensional layer on the bc plane, and further linked into the three-dimensional architecture by O—H···O/N/S hydrogen bonds (Fig.3).

Related literature top

For background to the 2-[(carboxymethyl)sulfanyl]nicotinato ligand, see: Wang & Feng (2010). For related compounds, see: Jiang et al. (2012). For metal complexes with 2-mercaptonanicotinate ligands, see: Humphrey et al. (2006); Sun et al. (2011).

Experimental top

2-Carboxymethylsulfanyl nicotinic acid (1.0 mmol) in H2O (10 ml) was stirred under basic condition in which NH3.H2O was needed to keep pH value of 11. CuCl2.2H2O was added and stirred for 2 h. The resulting solution was placed for 2 days, and the crystals were filtered off, giving blue crystals of the title compound for X-ray analysis.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [aromatic C—H 0.93 Å and aliphatic C—H 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The oxygen-bound H-atoms was located in a difference Fourier maps and refined with the O—H distance restrained to 0.83 (2) Å and Uiso(H) = 1.2Ueq(O).

Structure description top

2-Carboxymethylsulfanylnicotinic acid is prepared from 2-mercaptonanicotinic acid (Wang & Feng, 2010). 2-Mercaptonanicotinic acid is a multifunctional ligand, and some complexes containing 2-mercaptonanicotinate ligand have been previously investigated (Humphrey et al., 2006; Sun et al., 2011).

The 2-carboxymethylsulfanylnicotinic acid is an interesting ligand because of its potential versatile coordinate behavior. Recently, only three metal compounds have been reported about 2-carboxymethylsulfanyl nicotinic acid (Jiang et al., 2012). Herein, we report the synthesis and structure of the title compound.

A perspective view of (I) is presented in Fig.1. The asymmetric unit consists of one CuII ion, one (C8H5NO4S)2- ligands, one coordinated water molecule, and three lattice water molecules. As shown in Fig. 2, each pair of Cu2+ ion is µ-linked by four carboxylic groups of the individual (C8H5NO4S)2- ligands with Cu···Cu distances of 2.6524 (15) Å. The (C8H5NO4S)2- ligands bridge adjacent dinuclear units in a head-to-tail fashion to form a two-dimensional layer on the bc plane, and further linked into the three-dimensional architecture by O—H···O/N/S hydrogen bonds (Fig.3).

For background to the 2-[(carboxymethyl)sulfanyl]nicotinato ligand, see: Wang & Feng (2010). For related compounds, see: Jiang et al. (2012). For metal complexes with 2-mercaptonanicotinate ligands, see: Humphrey et al. (2006); Sun et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability. Symmetry codes: (A) -x + 2,-y + 1,-z + 1.
[Figure 2] Fig. 2. A view of the two-dimensional layer structure of (I).
[Figure 3] Fig. 3. three-dimensional supramolecular architecture of (I). Dashed lines indicate hydrogen bonds.
Poly[[aqua{µ4-2-[(carboxymethyl)sulfanyl]nicotinato-κ4O:O':O'':O'''}copper(II)] trihydrate] top
Crystal data top
[Cu(C8H5NO4S)(H2O)]·3H2OF(000) = 708
Mr = 346.82Dx = 1.779 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3501 reflections
a = 9.940 (7) Åθ = 2.1–27.6°
b = 16.639 (9) ŵ = 1.88 mm1
c = 7.876 (4) ÅT = 296 K
β = 96.28 (5)°Plate, blue
V = 1294.8 (13) Å30.25 × 0.09 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2973 independent reflections
Radiation source: fine-focus sealed tube2331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1112
Tmin = 0.812, Tmax = 0.892k = 2121
20324 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2317P]
where P = (Fo2 + 2Fc2)/3
2973 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C8H5NO4S)(H2O)]·3H2OV = 1294.8 (13) Å3
Mr = 346.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.940 (7) ŵ = 1.88 mm1
b = 16.639 (9) ÅT = 296 K
c = 7.876 (4) Å0.25 × 0.09 × 0.06 mm
β = 96.28 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2973 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2331 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.892Rint = 0.054
20324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
2973 reflectionsΔρmin = 0.32 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.10928 (3)0.455426 (15)0.48878 (4)0.02469 (11)
S10.96122 (7)0.21713 (3)0.44052 (8)0.03032 (16)
O10.97500 (18)0.37850 (10)0.3866 (2)0.0338 (4)
O1W1.2932 (2)0.39085 (12)0.4498 (3)0.0473 (5)
H1WA1.27870.34690.40370.057*
H1WB1.34190.41410.38450.057*
O20.7893 (2)0.45444 (10)0.3972 (3)0.0369 (4)
O31.0779 (2)0.08898 (11)0.2128 (2)0.0374 (4)
O40.89346 (19)0.01319 (10)0.2319 (2)0.0328 (4)
N10.7301 (2)0.17934 (12)0.2526 (3)0.0341 (5)
C10.5606 (3)0.27286 (16)0.1366 (4)0.0398 (7)
H1A0.47680.28170.07450.048*
C20.7636 (3)0.32137 (14)0.2965 (3)0.0267 (5)
C30.6384 (3)0.33602 (16)0.2060 (4)0.0348 (6)
H3A0.60680.38850.19190.042*
C40.6114 (3)0.19624 (16)0.1627 (4)0.0393 (7)
H4A0.56000.15360.11470.047*
C50.8059 (3)0.24081 (14)0.3179 (3)0.0260 (5)
C60.8489 (3)0.38985 (13)0.3664 (3)0.0268 (5)
C70.9514 (3)0.10887 (14)0.4500 (3)0.0319 (6)
H7A1.01780.08970.54030.038*
H7B0.86260.09380.47940.038*
C80.9757 (3)0.06765 (14)0.2838 (3)0.0286 (5)
O2W0.6123 (3)0.00071 (16)0.2997 (4)0.0759 (8)
H2WA0.63850.02440.39070.091*
H2WB0.67740.02990.28860.091*
O3W0.3765 (3)0.07734 (18)0.3764 (4)0.0831 (9)
H3WA0.30480.05890.33290.100*
H3WB0.43640.04910.34240.100*
O4W0.2538 (3)0.24845 (18)0.2749 (5)0.1001 (11)
H4WA0.27660.22800.18810.120*
H4WB0.16990.23620.26910.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02945 (19)0.01710 (15)0.02766 (18)0.00031 (11)0.00377 (12)0.00057 (11)
S10.0364 (4)0.0231 (3)0.0307 (4)0.0012 (3)0.0001 (3)0.0052 (2)
O10.0335 (11)0.0208 (8)0.0472 (12)0.0032 (7)0.0043 (9)0.0036 (7)
O1W0.0429 (12)0.0403 (11)0.0603 (14)0.0085 (9)0.0123 (10)0.0024 (9)
O20.0382 (11)0.0238 (9)0.0469 (12)0.0011 (8)0.0026 (9)0.0080 (8)
O30.0434 (12)0.0363 (10)0.0337 (10)0.0079 (9)0.0093 (9)0.0118 (8)
O40.0412 (11)0.0248 (8)0.0330 (10)0.0010 (8)0.0066 (8)0.0051 (7)
N10.0417 (14)0.0242 (10)0.0357 (13)0.0065 (9)0.0016 (10)0.0041 (9)
C10.0335 (16)0.0393 (15)0.0444 (17)0.0048 (12)0.0052 (13)0.0017 (12)
C20.0320 (14)0.0234 (12)0.0254 (13)0.0021 (10)0.0056 (10)0.0014 (9)
C30.0357 (16)0.0275 (13)0.0410 (16)0.0008 (11)0.0027 (12)0.0011 (11)
C40.0424 (17)0.0338 (14)0.0403 (16)0.0121 (12)0.0012 (13)0.0045 (12)
C50.0308 (14)0.0242 (11)0.0238 (12)0.0016 (10)0.0066 (10)0.0016 (9)
C60.0398 (16)0.0188 (11)0.0221 (12)0.0042 (10)0.0039 (11)0.0023 (9)
C70.0499 (17)0.0225 (12)0.0234 (13)0.0016 (11)0.0039 (12)0.0010 (9)
C80.0388 (15)0.0202 (11)0.0263 (13)0.0065 (10)0.0015 (11)0.0008 (9)
O2W0.0679 (18)0.0680 (17)0.097 (2)0.0153 (14)0.0337 (15)0.0023 (15)
O3W0.0590 (18)0.0867 (19)0.098 (2)0.0033 (15)0.0178 (15)0.0172 (17)
O4W0.069 (2)0.090 (2)0.150 (3)0.0265 (17)0.048 (2)0.055 (2)
Geometric parameters (Å, º) top
Cu1—O11.958 (2)N1—C51.340 (3)
Cu1—O2i1.9682 (19)C1—C41.379 (4)
Cu1—O3ii1.9687 (19)C1—C31.382 (4)
Cu1—O4iii1.9836 (19)C1—H1A0.9300
Cu1—O1W2.171 (2)C2—C31.386 (4)
Cu1—Cu1i2.6524 (15)C2—C51.410 (3)
S1—C51.773 (3)C2—C61.489 (3)
S1—C71.806 (3)C3—H3A0.9300
O1—C61.261 (3)C4—H4A0.9300
O1W—H1WA0.8228C7—C81.521 (3)
O1W—H1WB0.8384C7—H7A0.9700
O2—C61.263 (3)C7—H7B0.9700
O2—Cu1i1.9682 (19)O2W—H2WA0.8345
O3—C81.263 (3)O2W—H2WB0.8359
O3—Cu1iv1.9687 (19)O3W—H3WA0.8165
O4—C81.258 (3)O3W—H3WB0.8253
O4—Cu1v1.9836 (19)O4W—H4WA0.8176
N1—C41.337 (4)O4W—H4WB0.8547
O1—Cu1—O2i167.93 (8)C3—C2—C5117.9 (2)
O1—Cu1—O3ii87.44 (9)C3—C2—C6119.9 (2)
O2i—Cu1—O3ii90.03 (9)C5—C2—C6122.2 (2)
O1—Cu1—O4iii90.75 (9)C1—C3—C2120.1 (2)
O2i—Cu1—O4iii89.31 (9)C1—C3—H3A119.9
O3ii—Cu1—O4iii168.14 (8)C2—C3—H3A119.9
O1—Cu1—O1W99.49 (9)N1—C4—C1124.1 (3)
O2i—Cu1—O1W92.56 (9)N1—C4—H4A117.9
O3ii—Cu1—O1W99.18 (9)C1—C4—H4A117.9
O4iii—Cu1—O1W92.69 (9)N1—C5—C2122.1 (2)
O1—Cu1—Cu1i82.33 (7)N1—C5—S1117.35 (19)
O2i—Cu1—Cu1i85.74 (7)C2—C5—S1120.48 (19)
O3ii—Cu1—Cu1i86.50 (7)O1—C6—O2125.7 (2)
O4iii—Cu1—Cu1i81.64 (7)O1—C6—C2116.7 (2)
O1W—Cu1—Cu1i174.09 (6)O2—C6—C2117.5 (2)
C5—S1—C7101.32 (12)C8—C7—S1113.56 (17)
C6—O1—Cu1125.29 (16)C8—C7—H7A108.9
Cu1—O1W—H1WA113.2S1—C7—H7A108.9
Cu1—O1W—H1WB114.3C8—C7—H7B108.9
H1WA—O1W—H1WB103.0S1—C7—H7B108.9
C6—O2—Cu1i120.56 (18)H7A—C7—H7B107.7
C8—O3—Cu1iv120.36 (16)O4—C8—O3125.7 (2)
C8—O4—Cu1v125.43 (17)O4—C8—C7116.5 (2)
C4—N1—C5118.0 (2)O3—C8—C7117.8 (2)
C4—C1—C3117.6 (3)H2WA—O2W—H2WB101.8
C4—C1—H1A121.2H3WA—O3W—H3WB106.2
C3—C1—H1A121.2H4WA—O4W—H4WB102.4
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4Wvi0.821.932.747 (4)174
O1W—H1WB···O2Wiii0.842.112.899 (4)156
O2W—H2WA···O3Wvii0.832.052.843 (5)157
O2W—H2WB···O40.842.262.911 (4)135
O2W—H2WB···N10.842.563.253 (4)141
O3W—H3WA···O3viii0.822.403.110 (4)146
O3W—H3WB···O2W0.832.002.803 (5)165
O4W—H4WB···S1viii0.852.623.356 (4)146
Symmetry codes: (iii) x+2, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x+1, y, z+1; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H5NO4S)(H2O)]·3H2O
Mr346.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.940 (7), 16.639 (9), 7.876 (4)
β (°) 96.28 (5)
V3)1294.8 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.25 × 0.09 × 0.06
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.812, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
20324, 2973, 2331
Rint0.054
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.04
No. of reflections2973
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008.

Selected bond lengths (Å) top
Cu1—O11.958 (2)Cu1—O4iii1.9836 (19)
Cu1—O2i1.9682 (19)Cu1—O1W2.171 (2)
Cu1—O3ii1.9687 (19)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4Wiv0.821.932.747 (4)174
O1W—H1WB···O2Wiii0.842.112.899 (4)156
O2W—H2WA···O3Wv0.832.052.843 (5)157
O2W—H2WB···O40.842.262.911 (4)135
O2W—H2WB···N10.842.563.253 (4)141
O3W—H3WA···O3vi0.822.403.110 (4)146
O3W—H3WB···O2W0.832.002.803 (5)165
O4W—H4WB···S1vi0.852.623.356 (4)146
Symmetry codes: (iii) x+2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x1, y, z.
 

Acknowledgements

The work was supported by the Zhejiang province education department scientific research project (No. Y201119396).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHumphrey, S. M., Alberola, A., Gómez Garcíab, C. J. & Wood, P. T. (2006). Chem. Commun. pp. 1607–1609.  Web of Science CSD CrossRef Google Scholar
First citationJiang, X.-R., Wang, X.-J. & Feng, Y.-L. (2012). Inorg. Chim. Acta, 383, 38–45.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Wang, D.-F., Han, X.-G., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2011). Chem. Commun. pp. 746–748.  Web of Science CSD CrossRef Google Scholar
First citationWang, X.-J. & Feng, Y.-L. (2010). Acta Cryst. E66, o1298.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds