organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-{[3-(3-Meth­­oxy­phen­yl)-1,2,4-oxa­diazol-5-yl]meth­­oxy}quinoline monohydrate

aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 18 March 2013; accepted 15 April 2013; online 20 April 2013)

In the title hydrate, C19H15N3O3·H2O, the three aromatic groups in the quinoline derivative are close to coplanar: the central oxa­diazole fragment makes dihedral angles of 15.7 (2)° with the benzene ring and 5.30 (14)° with the quinoline ring system. In the crystal, the organic mol­ecules are connected with water mol­ecules by pairs of O—H⋯N hydrogen bonds involving the quinoline and oxa­diazole N atoms. The mol­ecules form stacks along the a axis, neighboring mol­ecules within each stack being related by inversion and the shortest distance between the centroids of the oxa­diazole and pyridine rings being 3.500 (2) Å. Mol­ecules from neighboring stacks are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional structure.

Related literature

For the preparation of the title compound, see: Shishue & Henry (1989[Shishue, C. & Henry, J. S. (1989). J. Heterocycl. Chem., 26, 125-128.]). For the general synthetic procedure, see: Munoz-Muniz & Juaristi (2003[Munoz-Muniz, O. & Juaristi, E. (2003). Tetrahedron, 59, 4223-4229.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N3O3·H2O

  • Mr = 351.36

  • Monoclinic, P 21 /n

  • a = 7.9510 (16) Å

  • b = 6.9870 (14) Å

  • c = 30.395 (6) Å

  • β = 92.31 (3)°

  • V = 1687.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.971, Tmax = 0.990

  • 3339 measured reflections

  • 3101 independent reflections

  • 2183 reflections with I > 2σ(I)

  • Rint = 0.056

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.195

  • S = 1.01

  • 3101 reflections

  • 244 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWB⋯N2 0.92 (5) 2.05 (5) 2.965 (3) 174 (5)
OW—HWA⋯N3 0.88 (4) 1.96 (4) 2.840 (4) 172 (4)
C10—H10A⋯OWi 0.97 2.39 3.340 (4) 165
C16—H16A⋯O1ii 0.93 2.58 3.309 (4) 135
Symmetry codes: (i) x, y-1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

1,2,4-oxadiazole derivatives plays an important role in medicine and as pesticides.They show high biological activity, such as antibacterial, anti-hiv and weed control. The 1,2,4-oxadiazole derivatives also can be used in metal-ions fluorescent recognition. The title compound, 8-{[3-(3-methoxyphenyl)-1,2,4-oxadiazol-5-yl]methoxy}quinoline, was used in metal-ions fluorescent recognition. In the molecule of 8-{[3-(3-methoxyphenyl)-1,2,4-oxadiazol-5-yl]methoxy} quinoline monohydrate (Fig,1), the bond length (Allen et al., 1987) and angles are within normal ranges. The molecule is almost planar. In the crystal, the intermolecular C16—H16···O1 hydrogen bonds link the molecules into zig-zag chains along the c axis and the intermolecular C10-H10···OW hydrogen bonds link the molecules into zig-zag chains along the b axis, thus forming a stable structure (Fig. 2).

Related literature top

For the preparation of the title compound, see: Shishue & Henry (1989). For the general synthetic procedure, see: Munoz-Muniz & Juaristi (2003). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, 8-{[3-(3-methoxyphenyl)-1,2,4-oxadiazol-5-yl]methoxy} quinoline was prepared by the literature method (Shishue & Henry, 1989). 3-(4-Methoxy-phenyl)-5-chloromethyl-1,2,4-oxadizole(1.6 g, 8.2 mmol), 8-hydroxyquinoline(1.2 g, 8.2 mmol), potassium carbonate(1.7 g, 12.3 mmol) and potassium iodide (catalytic amount) were added to acetone (20 ml), and then the mixture was heated to reflux for 6 hours, cooled to room temperature, filtered and evaporated to afford the yellow solid. The crude product was recrystallized from ethyl acetate. Yield 2 g (80.5%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. In the absence of significant anomalous dispersion effects, 1739 Friedel pairs were merged.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the c axis. Dashed lines indicate intermolecular C—H···O interactions.
8-{[3-(3-Methoxyphenyl)-1,2,4-oxadiazol-5-yl]methoxy}quinoline monohydrate top
Crystal data top
C19H15N3O3·H2OF(000) = 736
Mr = 351.36Dx = 1.383 Mg m3
Monoclinic, P21/nMelting point: 338 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.9510 (16) ÅCell parameters from 25 reflections
b = 6.9870 (14) Åθ = 10–14°
c = 30.395 (6) ŵ = 0.10 mm1
β = 92.31 (3)°T = 293 K
V = 1687.2 (6) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.4°, θmin = 1.3°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.971, Tmax = 0.990l = 3636
3339 measured reflections3 standard reflections every 200 reflections
3101 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.1P)2 + 1.4P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3101 reflectionsΔρmax = 0.22 e Å3
244 parametersΔρmin = 0.21 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (4)
Crystal data top
C19H15N3O3·H2OV = 1687.2 (6) Å3
Mr = 351.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9510 (16) ŵ = 0.10 mm1
b = 6.9870 (14) ÅT = 293 K
c = 30.395 (6) Å0.30 × 0.20 × 0.10 mm
β = 92.31 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2183 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.056
Tmin = 0.971, Tmax = 0.9903 standard reflections every 200 reflections
3339 measured reflections intensity decay: 1%
3101 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.195H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.22 e Å3
3101 reflectionsΔρmin = 0.21 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4276 (3)0.7480 (4)0.77526 (8)0.0734 (8)
N10.4925 (4)0.3104 (4)0.63924 (9)0.0614 (8)
C10.3027 (6)0.6086 (7)0.78108 (13)0.0851 (13)
H1B0.25350.62700.80910.128*
H1C0.35220.48340.78010.128*
H1D0.21710.62010.75800.128*
N20.6199 (3)0.4981 (3)0.59050 (8)0.0431 (6)
O20.5011 (3)0.2177 (3)0.59795 (8)0.0607 (7)
C20.5139 (4)0.7451 (5)0.73722 (10)0.0550 (8)
O30.6989 (3)0.4102 (3)0.50481 (6)0.0470 (6)
N30.8809 (3)0.6747 (3)0.46505 (8)0.0454 (6)
C30.4933 (4)0.6079 (5)0.70490 (10)0.0504 (8)
H3B0.41780.50780.70830.061*
C40.5858 (4)0.6199 (4)0.66719 (9)0.0464 (7)
C50.6971 (4)0.7703 (5)0.66207 (11)0.0595 (9)
H5A0.75800.77990.63670.071*
C60.7167 (5)0.9053 (6)0.69492 (12)0.0703 (11)
H6A0.79221.00560.69170.084*
C70.6265 (5)0.8940 (5)0.73233 (12)0.0658 (10)
H7A0.64090.98590.75430.079*
C80.5642 (4)0.4745 (4)0.63264 (10)0.0442 (7)
C90.5784 (4)0.3397 (4)0.57156 (9)0.0416 (7)
C100.6032 (4)0.2704 (4)0.52647 (10)0.0451 (7)
H10A0.66240.14900.52730.054*
H10B0.49530.25230.51100.054*
C110.7455 (3)0.3672 (4)0.46310 (9)0.0400 (7)
C120.7012 (4)0.2037 (4)0.44091 (10)0.0489 (8)
H12A0.63770.11060.45450.059*
C130.7514 (4)0.1761 (5)0.39758 (11)0.0551 (8)
H13A0.71930.06500.38260.066*
C140.8448 (4)0.3072 (5)0.37739 (10)0.0542 (8)
H14A0.87810.28500.34890.065*
C150.8928 (4)0.4787 (4)0.39913 (9)0.0455 (7)
C160.9866 (4)0.6257 (5)0.37967 (11)0.0558 (9)
H16A1.02150.61190.35100.067*
C171.0257 (4)0.7863 (5)0.40267 (12)0.0583 (9)
H17A1.08880.88290.39030.070*
C180.9697 (4)0.8045 (5)0.44528 (11)0.0523 (8)
H18A0.99700.91590.46070.063*
C190.8423 (3)0.5107 (4)0.44272 (9)0.0402 (7)
OW0.7589 (3)0.8317 (3)0.54382 (9)0.0647 (7)
HWB0.724 (6)0.727 (7)0.5591 (16)0.106 (16)*
HWA0.806 (6)0.781 (7)0.5207 (12)0.110 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0923 (18)0.0818 (18)0.0472 (14)0.0117 (15)0.0183 (12)0.0116 (13)
N10.090 (2)0.0494 (16)0.0465 (15)0.0100 (15)0.0192 (14)0.0026 (13)
C10.107 (3)0.095 (3)0.056 (2)0.014 (3)0.030 (2)0.006 (2)
N20.0485 (14)0.0388 (13)0.0425 (13)0.0023 (11)0.0059 (10)0.0021 (11)
O20.0865 (16)0.0423 (12)0.0550 (14)0.0139 (11)0.0220 (12)0.0013 (10)
C20.062 (2)0.060 (2)0.0432 (17)0.0007 (17)0.0033 (14)0.0004 (15)
O30.0630 (13)0.0356 (11)0.0433 (11)0.0086 (9)0.0121 (9)0.0049 (9)
N30.0484 (14)0.0391 (13)0.0484 (14)0.0026 (11)0.0004 (11)0.0006 (11)
C30.0566 (18)0.0511 (18)0.0436 (17)0.0030 (15)0.0020 (14)0.0021 (14)
C40.0487 (16)0.0486 (17)0.0420 (16)0.0013 (14)0.0019 (13)0.0020 (13)
C50.064 (2)0.065 (2)0.0500 (19)0.0137 (17)0.0110 (15)0.0045 (17)
C60.078 (2)0.071 (2)0.062 (2)0.025 (2)0.0082 (19)0.0123 (19)
C70.079 (2)0.066 (2)0.052 (2)0.008 (2)0.0004 (17)0.0162 (18)
C80.0482 (16)0.0408 (16)0.0438 (16)0.0005 (13)0.0054 (12)0.0041 (13)
C90.0467 (16)0.0349 (14)0.0435 (16)0.0004 (12)0.0040 (12)0.0042 (13)
C100.0527 (17)0.0358 (15)0.0470 (17)0.0047 (13)0.0053 (13)0.0022 (13)
C110.0454 (15)0.0353 (14)0.0393 (15)0.0046 (12)0.0021 (12)0.0023 (12)
C120.0566 (18)0.0401 (16)0.0500 (18)0.0026 (14)0.0030 (14)0.0054 (14)
C130.066 (2)0.0465 (18)0.0525 (19)0.0008 (16)0.0010 (15)0.0142 (16)
C140.065 (2)0.060 (2)0.0372 (16)0.0088 (17)0.0026 (14)0.0049 (15)
C150.0490 (16)0.0491 (17)0.0382 (15)0.0085 (14)0.0010 (12)0.0037 (13)
C160.0588 (19)0.065 (2)0.0443 (17)0.0067 (16)0.0079 (14)0.0122 (16)
C170.063 (2)0.0495 (19)0.063 (2)0.0027 (16)0.0103 (16)0.0154 (17)
C180.0580 (19)0.0410 (17)0.0578 (19)0.0060 (15)0.0032 (15)0.0008 (15)
C190.0427 (15)0.0378 (15)0.0397 (15)0.0039 (12)0.0027 (12)0.0003 (12)
OW0.0898 (19)0.0395 (12)0.0661 (17)0.0104 (13)0.0176 (14)0.0020 (12)
Geometric parameters (Å, º) top
O1—C21.368 (4)C6—H6A0.9300
O1—C11.408 (5)C7—H7A0.9300
N1—C81.300 (4)C9—C101.474 (4)
N1—O21.416 (3)C10—H10A0.9700
C1—H1B0.9600C10—H10B0.9700
C1—H1C0.9600C11—C121.366 (4)
C1—H1D0.9600C11—C191.421 (4)
N2—C91.285 (4)C12—C131.405 (4)
N2—C81.382 (4)C12—H12A0.9300
O2—C91.337 (3)C13—C141.343 (5)
C2—C31.378 (4)C13—H13A0.9300
C2—C71.385 (5)C14—C151.413 (4)
O3—C111.368 (3)C14—H14A0.9300
O3—C101.417 (3)C15—C161.414 (4)
N3—C181.310 (4)C15—C191.417 (4)
N3—C191.360 (4)C16—C171.352 (5)
C3—C41.389 (4)C16—H16A0.9300
C3—H3B0.9300C17—C181.392 (5)
C4—C51.386 (4)C17—H17A0.9300
C4—C81.466 (4)C18—H18A0.9300
C5—C61.378 (5)OW—HWB0.92 (5)
C5—H5A0.9300OW—HWA0.881 (19)
C6—C71.371 (5)
C2—O1—C1118.5 (3)O2—C9—C10115.5 (2)
C8—N1—O2103.3 (2)O3—C10—C9107.5 (2)
O1—C1—H1B109.5O3—C10—H10A110.2
O1—C1—H1C109.5C9—C10—H10A110.2
H1B—C1—H1C109.5O3—C10—H10B110.2
O1—C1—H1D109.5C9—C10—H10B110.2
H1B—C1—H1D109.5H10A—C10—H10B108.5
H1C—C1—H1D109.5C12—C11—O3124.5 (3)
C9—N2—C8103.1 (2)C12—C11—C19120.5 (3)
C9—O2—N1106.3 (2)O3—C11—C19114.9 (2)
O1—C2—C3124.3 (3)C11—C12—C13120.1 (3)
O1—C2—C7115.3 (3)C11—C12—H12A120.0
C3—C2—C7120.4 (3)C13—C12—H12A120.0
C11—O3—C10116.7 (2)C14—C13—C12121.2 (3)
C18—N3—C19118.0 (3)C14—C13—H13A119.4
C2—C3—C4119.6 (3)C12—C13—H13A119.4
C2—C3—H3B120.2C13—C14—C15120.6 (3)
C4—C3—H3B120.2C13—C14—H14A119.7
C5—C4—C3120.0 (3)C15—C14—H14A119.7
C5—C4—C8120.1 (3)C14—C15—C16123.9 (3)
C3—C4—C8119.9 (3)C14—C15—C19119.3 (3)
C6—C5—C4119.4 (3)C16—C15—C19116.8 (3)
C6—C5—H5A120.3C17—C16—C15120.1 (3)
C4—C5—H5A120.3C17—C16—H16A120.0
C7—C6—C5120.9 (3)C15—C16—H16A120.0
C7—C6—H6A119.5C16—C17—C18118.8 (3)
C5—C6—H6A119.5C16—C17—H17A120.6
C6—C7—C2119.6 (3)C18—C17—H17A120.6
C6—C7—H7A120.2N3—C18—C17124.2 (3)
C2—C7—H7A120.2N3—C18—H18A117.9
N1—C8—N2114.0 (3)C17—C18—H18A117.9
N1—C8—C4122.7 (3)N3—C19—C15122.2 (3)
N2—C8—C4123.3 (3)N3—C19—C11119.4 (2)
N2—C9—O2113.3 (3)C15—C19—C11118.3 (3)
N2—C9—C10131.2 (3)HWB—OW—HWA103 (4)
C8—N1—O2—C90.2 (3)N2—C9—C10—O34.2 (4)
C1—O1—C2—C33.7 (5)O2—C9—C10—O3175.0 (2)
C1—O1—C2—C7175.7 (4)C10—O3—C11—C122.4 (4)
O1—C2—C3—C4179.1 (3)C10—O3—C11—C19179.6 (2)
C7—C2—C3—C40.2 (5)O3—C11—C12—C13178.0 (3)
C2—C3—C4—C50.6 (5)C19—C11—C12—C130.1 (4)
C2—C3—C4—C8179.9 (3)C11—C12—C13—C140.8 (5)
C3—C4—C5—C61.0 (5)C12—C13—C14—C151.1 (5)
C8—C4—C5—C6179.7 (3)C13—C14—C15—C16178.1 (3)
C4—C5—C6—C70.7 (6)C13—C14—C15—C190.4 (5)
C5—C6—C7—C20.1 (6)C14—C15—C16—C17179.3 (3)
O1—C2—C7—C6178.8 (4)C19—C15—C16—C170.7 (4)
C3—C2—C7—C60.5 (6)C15—C16—C17—C181.0 (5)
O2—N1—C8—N20.2 (4)C19—N3—C18—C170.7 (5)
O2—N1—C8—C4179.3 (3)C16—C17—C18—N30.3 (5)
C9—N2—C8—N10.1 (3)C18—N3—C19—C151.0 (4)
C9—N2—C8—C4179.2 (3)C18—N3—C19—C11179.7 (3)
C5—C4—C8—N1164.3 (3)C14—C15—C19—N3178.4 (3)
C3—C4—C8—N116.4 (5)C16—C15—C19—N30.3 (4)
C5—C4—C8—N214.8 (5)C14—C15—C19—C110.4 (4)
C3—C4—C8—N2164.6 (3)C16—C15—C19—C11179.0 (3)
C8—N2—C9—O20.1 (3)C12—C11—C19—N3178.2 (3)
C8—N2—C9—C10179.2 (3)O3—C11—C19—N30.0 (4)
N1—O2—C9—N20.2 (3)C12—C11—C19—C150.7 (4)
N1—O2—C9—C10179.2 (3)O3—C11—C19—C15178.8 (2)
C11—O3—C10—C9175.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···N20.92 (5)2.05 (5)2.965 (3)174 (5)
OW—HWA···N30.88 (4)1.96 (4)2.840 (4)172 (4)
C10—H10A···OWi0.972.393.340 (4)165
C16—H16A···O1ii0.932.583.309 (4)135
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H15N3O3·H2O
Mr351.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.9510 (16), 6.9870 (14), 30.395 (6)
β (°) 92.31 (3)
V3)1687.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.971, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3339, 3101, 2183
Rint0.056
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.195, 1.01
No. of reflections3101
No. of parameters244
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···N20.92 (5)2.05 (5)2.965 (3)174 (5)
OW—HWA···N30.88 (4)1.96 (4)2.840 (4)172 (4)
C10—H10A···OWi0.97002.39003.340 (4)165.00
C16—H16A···O1ii0.93002.58003.309 (4)135.00
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft. The Netherlands.
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationMunoz-Muniz, O. & Juaristi, E. (2003). Tetrahedron, 59, 4223–4229.  CAS
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShishue, C. & Henry, J. S. (1989). J. Heterocycl. Chem., 26, 125–128.
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds