supplementary materials


yk2090 scheme

Acta Cryst. (2013). E69, o760    [ doi:10.1107/S1600536813010271 ]

8-{[3-(3-Methoxyphenyl)-1,2,4-oxadiazol-5-yl]methoxy}quinoline monohydrate

H. Shen, S.-Y. Bai, X.-Y. Han, X.-Z. Li and H.-B. Wang

Abstract top

In the title hydrate, C19H15N3O3·H2O, the three aromatic groups in the quinoline derivative are close to coplanar: the central oxadiazole fragment makes dihedral angles of 15.7 (2)° with the benzene ring and 5.30 (14)° with the quinoline ring system. In the crystal, the organic molecules are connected with water molecules by pairs of O-H...N hydrogen bonds involving the quinoline and oxadiazole N atoms. The molecules form stacks along the a axis, neighboring molecules within each stack being related by inversion and the shortest distance between the centroids of the oxadiazole and pyridine rings being 3.500 (2) Å. Molecules from neighboring stacks are linked by weak C-H...O hydrogen bonds, forming a three-dimensional structure.

Comment top

1,2,4-oxadiazole derivatives plays an important role in medicine and as pesticides.They show high biological activity, such as antibacterial, anti-hiv and weed control. The 1,2,4-oxadiazole derivatives also can be used in metal-ions fluorescent recognition. The title compound, 8-{[3-(3-methoxyphenyl)-1,2,4-oxadiazol-5-yl]methoxy}quinoline, was used in metal-ions fluorescent recognition. In the molecule of 8-{[3-(3-methoxyphenyl)-1,2,4-oxadiazol-5-yl]methoxy} quinoline monohydrate (Fig,1), the bond length (Allen et al., 1987) and angles are within normal ranges. The molecule is almost planar. In the crystal, the intermolecular C16—H16···O1 hydrogen bonds link the molecules into zig-zag chains along the c axis and the intermolecular C10-H10···OW hydrogen bonds link the molecules into zig-zag chains along the b axis, thus forming a stable structure (Fig. 2).

Related literature top

For the preparation of the title compound, see: Shishue & Henry (1989). For the general synthetic procedure, see: Munoz-Muniz & Juaristi (2003). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, 8-{[3-(3-methoxyphenyl)-1,2,4-oxadiazol-5-yl]methoxy} quinoline was prepared by the literature method (Shishue & Henry, 1989). 3-(4-Methoxy-phenyl)-5-chloromethyl-1,2,4-oxadizole(1.6 g, 8.2 mmol), 8-hydroxyquinoline(1.2 g, 8.2 mmol), potassium carbonate(1.7 g, 12.3 mmol) and potassium iodide (catalytic amount) were added to acetone (20 ml), and then the mixture was heated to reflux for 6 hours, cooled to room temperature, filtered and evaporated to afford the yellow solid. The crude product was recrystallized from ethyl acetate. Yield 2 g (80.5%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. In the absence of significant anomalous dispersion effects, 1739 Friedel pairs were merged.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the c axis. Dashed lines indicate intermolecular C—H···O interactions.
8-{[3-(3-Methoxyphenyl)-1,2,4-oxadiazol-5-yl]methoxy}quinoline monohydrate top
Crystal data top
C19H15N3O3·H2OF(000) = 736
Mr = 351.36Dx = 1.383 Mg m3
Monoclinic, P21/nMelting point: 338 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.9510 (16) ÅCell parameters from 25 reflections
b = 6.9870 (14) Åθ = 10–14°
c = 30.395 (6) ŵ = 0.10 mm1
β = 92.31 (3)°T = 293 K
V = 1687.2 (6) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.4°, θmin = 1.3°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.971, Tmax = 0.990l = 3636
3339 measured reflections3 standard reflections every 200 reflections
3101 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.1P)2 + 1.4P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3101 reflectionsΔρmax = 0.22 e Å3
244 parametersΔρmin = 0.21 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (4)
Crystal data top
C19H15N3O3·H2OV = 1687.2 (6) Å3
Mr = 351.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9510 (16) ŵ = 0.10 mm1
b = 6.9870 (14) ÅT = 293 K
c = 30.395 (6) Å0.30 × 0.20 × 0.10 mm
β = 92.31 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2183 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.056
Tmin = 0.971, Tmax = 0.990θmax = 25.4°
3339 measured reflections3 standard reflections every 200 reflections
3101 independent reflections intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195Δρmax = 0.22 e Å3
S = 1.01Δρmin = 0.21 e Å3
3101 reflectionsAbsolute structure: ?
244 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4276 (3)0.7480 (4)0.77526 (8)0.0734 (8)
N10.4925 (4)0.3104 (4)0.63924 (9)0.0614 (8)
C10.3027 (6)0.6086 (7)0.78108 (13)0.0851 (13)
H1B0.25350.62700.80910.128*
H1C0.35220.48340.78010.128*
H1D0.21710.62010.75800.128*
N20.6199 (3)0.4981 (3)0.59050 (8)0.0431 (6)
O20.5011 (3)0.2177 (3)0.59795 (8)0.0607 (7)
C20.5139 (4)0.7451 (5)0.73722 (10)0.0550 (8)
O30.6989 (3)0.4102 (3)0.50481 (6)0.0470 (6)
N30.8809 (3)0.6747 (3)0.46505 (8)0.0454 (6)
C30.4933 (4)0.6079 (5)0.70490 (10)0.0504 (8)
H3B0.41780.50780.70830.061*
C40.5858 (4)0.6199 (4)0.66719 (9)0.0464 (7)
C50.6971 (4)0.7703 (5)0.66207 (11)0.0595 (9)
H5A0.75800.77990.63670.071*
C60.7167 (5)0.9053 (6)0.69492 (12)0.0703 (11)
H6A0.79221.00560.69170.084*
C70.6265 (5)0.8940 (5)0.73233 (12)0.0658 (10)
H7A0.64090.98590.75430.079*
C80.5642 (4)0.4745 (4)0.63264 (10)0.0442 (7)
C90.5784 (4)0.3397 (4)0.57156 (9)0.0416 (7)
C100.6032 (4)0.2704 (4)0.52647 (10)0.0451 (7)
H10A0.66240.14900.52730.054*
H10B0.49530.25230.51100.054*
C110.7455 (3)0.3672 (4)0.46310 (9)0.0400 (7)
C120.7012 (4)0.2037 (4)0.44091 (10)0.0489 (8)
H12A0.63770.11060.45450.059*
C130.7514 (4)0.1761 (5)0.39758 (11)0.0551 (8)
H13A0.71930.06500.38260.066*
C140.8448 (4)0.3072 (5)0.37739 (10)0.0542 (8)
H14A0.87810.28500.34890.065*
C150.8928 (4)0.4787 (4)0.39913 (9)0.0455 (7)
C160.9866 (4)0.6257 (5)0.37967 (11)0.0558 (9)
H16A1.02150.61190.35100.067*
C171.0257 (4)0.7863 (5)0.40267 (12)0.0583 (9)
H17A1.08880.88290.39030.070*
C180.9697 (4)0.8045 (5)0.44528 (11)0.0523 (8)
H18A0.99700.91590.46070.063*
C190.8423 (3)0.5107 (4)0.44272 (9)0.0402 (7)
OW0.7589 (3)0.8317 (3)0.54382 (9)0.0647 (7)
HWB0.724 (6)0.727 (7)0.5591 (16)0.106 (16)*
HWA0.806 (6)0.781 (7)0.5207 (12)0.110 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0923 (18)0.0818 (18)0.0472 (14)0.0117 (15)0.0183 (12)0.0116 (13)
N10.090 (2)0.0494 (16)0.0465 (15)0.0100 (15)0.0192 (14)0.0026 (13)
C10.107 (3)0.095 (3)0.056 (2)0.014 (3)0.030 (2)0.006 (2)
N20.0485 (14)0.0388 (13)0.0425 (13)0.0023 (11)0.0059 (10)0.0021 (11)
O20.0865 (16)0.0423 (12)0.0550 (14)0.0139 (11)0.0220 (12)0.0013 (10)
C20.062 (2)0.060 (2)0.0432 (17)0.0007 (17)0.0033 (14)0.0004 (15)
O30.0630 (13)0.0356 (11)0.0433 (11)0.0086 (9)0.0121 (9)0.0049 (9)
N30.0484 (14)0.0391 (13)0.0484 (14)0.0026 (11)0.0004 (11)0.0006 (11)
C30.0566 (18)0.0511 (18)0.0436 (17)0.0030 (15)0.0020 (14)0.0021 (14)
C40.0487 (16)0.0486 (17)0.0420 (16)0.0013 (14)0.0019 (13)0.0020 (13)
C50.064 (2)0.065 (2)0.0500 (19)0.0137 (17)0.0110 (15)0.0045 (17)
C60.078 (2)0.071 (2)0.062 (2)0.025 (2)0.0082 (19)0.0123 (19)
C70.079 (2)0.066 (2)0.052 (2)0.008 (2)0.0004 (17)0.0162 (18)
C80.0482 (16)0.0408 (16)0.0438 (16)0.0005 (13)0.0054 (12)0.0041 (13)
C90.0467 (16)0.0349 (14)0.0435 (16)0.0004 (12)0.0040 (12)0.0042 (13)
C100.0527 (17)0.0358 (15)0.0470 (17)0.0047 (13)0.0053 (13)0.0022 (13)
C110.0454 (15)0.0353 (14)0.0393 (15)0.0046 (12)0.0021 (12)0.0023 (12)
C120.0566 (18)0.0401 (16)0.0500 (18)0.0026 (14)0.0030 (14)0.0054 (14)
C130.066 (2)0.0465 (18)0.0525 (19)0.0008 (16)0.0010 (15)0.0142 (16)
C140.065 (2)0.060 (2)0.0372 (16)0.0088 (17)0.0026 (14)0.0049 (15)
C150.0490 (16)0.0491 (17)0.0382 (15)0.0085 (14)0.0010 (12)0.0037 (13)
C160.0588 (19)0.065 (2)0.0443 (17)0.0067 (16)0.0079 (14)0.0122 (16)
C170.063 (2)0.0495 (19)0.063 (2)0.0027 (16)0.0103 (16)0.0154 (17)
C180.0580 (19)0.0410 (17)0.0578 (19)0.0060 (15)0.0032 (15)0.0008 (15)
C190.0427 (15)0.0378 (15)0.0397 (15)0.0039 (12)0.0027 (12)0.0003 (12)
OW0.0898 (19)0.0395 (12)0.0661 (17)0.0104 (13)0.0176 (14)0.0020 (12)
Geometric parameters (Å, º) top
O1—C21.368 (4)C6—H6A0.9300
O1—C11.408 (5)C7—H7A0.9300
N1—C81.300 (4)C9—C101.474 (4)
N1—O21.416 (3)C10—H10A0.9700
C1—H1B0.9600C10—H10B0.9700
C1—H1C0.9600C11—C121.366 (4)
C1—H1D0.9600C11—C191.421 (4)
N2—C91.285 (4)C12—C131.405 (4)
N2—C81.382 (4)C12—H12A0.9300
O2—C91.337 (3)C13—C141.343 (5)
C2—C31.378 (4)C13—H13A0.9300
C2—C71.385 (5)C14—C151.413 (4)
O3—C111.368 (3)C14—H14A0.9300
O3—C101.417 (3)C15—C161.414 (4)
N3—C181.310 (4)C15—C191.417 (4)
N3—C191.360 (4)C16—C171.352 (5)
C3—C41.389 (4)C16—H16A0.9300
C3—H3B0.9300C17—C181.392 (5)
C4—C51.386 (4)C17—H17A0.9300
C4—C81.466 (4)C18—H18A0.9300
C5—C61.378 (5)OW—HWB0.92 (5)
C5—H5A0.9300OW—HWA0.881 (19)
C6—C71.371 (5)
C2—O1—C1118.5 (3)O2—C9—C10115.5 (2)
C8—N1—O2103.3 (2)O3—C10—C9107.5 (2)
O1—C1—H1B109.5O3—C10—H10A110.2
O1—C1—H1C109.5C9—C10—H10A110.2
H1B—C1—H1C109.5O3—C10—H10B110.2
O1—C1—H1D109.5C9—C10—H10B110.2
H1B—C1—H1D109.5H10A—C10—H10B108.5
H1C—C1—H1D109.5C12—C11—O3124.5 (3)
C9—N2—C8103.1 (2)C12—C11—C19120.5 (3)
C9—O2—N1106.3 (2)O3—C11—C19114.9 (2)
O1—C2—C3124.3 (3)C11—C12—C13120.1 (3)
O1—C2—C7115.3 (3)C11—C12—H12A120.0
C3—C2—C7120.4 (3)C13—C12—H12A120.0
C11—O3—C10116.7 (2)C14—C13—C12121.2 (3)
C18—N3—C19118.0 (3)C14—C13—H13A119.4
C2—C3—C4119.6 (3)C12—C13—H13A119.4
C2—C3—H3B120.2C13—C14—C15120.6 (3)
C4—C3—H3B120.2C13—C14—H14A119.7
C5—C4—C3120.0 (3)C15—C14—H14A119.7
C5—C4—C8120.1 (3)C14—C15—C16123.9 (3)
C3—C4—C8119.9 (3)C14—C15—C19119.3 (3)
C6—C5—C4119.4 (3)C16—C15—C19116.8 (3)
C6—C5—H5A120.3C17—C16—C15120.1 (3)
C4—C5—H5A120.3C17—C16—H16A120.0
C7—C6—C5120.9 (3)C15—C16—H16A120.0
C7—C6—H6A119.5C16—C17—C18118.8 (3)
C5—C6—H6A119.5C16—C17—H17A120.6
C6—C7—C2119.6 (3)C18—C17—H17A120.6
C6—C7—H7A120.2N3—C18—C17124.2 (3)
C2—C7—H7A120.2N3—C18—H18A117.9
N1—C8—N2114.0 (3)C17—C18—H18A117.9
N1—C8—C4122.7 (3)N3—C19—C15122.2 (3)
N2—C8—C4123.3 (3)N3—C19—C11119.4 (2)
N2—C9—O2113.3 (3)C15—C19—C11118.3 (3)
N2—C9—C10131.2 (3)HWB—OW—HWA103 (4)
C8—N1—O2—C90.2 (3)N2—C9—C10—O34.2 (4)
C1—O1—C2—C33.7 (5)O2—C9—C10—O3175.0 (2)
C1—O1—C2—C7175.7 (4)C10—O3—C11—C122.4 (4)
O1—C2—C3—C4179.1 (3)C10—O3—C11—C19179.6 (2)
C7—C2—C3—C40.2 (5)O3—C11—C12—C13178.0 (3)
C2—C3—C4—C50.6 (5)C19—C11—C12—C130.1 (4)
C2—C3—C4—C8179.9 (3)C11—C12—C13—C140.8 (5)
C3—C4—C5—C61.0 (5)C12—C13—C14—C151.1 (5)
C8—C4—C5—C6179.7 (3)C13—C14—C15—C16178.1 (3)
C4—C5—C6—C70.7 (6)C13—C14—C15—C190.4 (5)
C5—C6—C7—C20.1 (6)C14—C15—C16—C17179.3 (3)
O1—C2—C7—C6178.8 (4)C19—C15—C16—C170.7 (4)
C3—C2—C7—C60.5 (6)C15—C16—C17—C181.0 (5)
O2—N1—C8—N20.2 (4)C19—N3—C18—C170.7 (5)
O2—N1—C8—C4179.3 (3)C16—C17—C18—N30.3 (5)
C9—N2—C8—N10.1 (3)C18—N3—C19—C151.0 (4)
C9—N2—C8—C4179.2 (3)C18—N3—C19—C11179.7 (3)
C5—C4—C8—N1164.3 (3)C14—C15—C19—N3178.4 (3)
C3—C4—C8—N116.4 (5)C16—C15—C19—N30.3 (4)
C5—C4—C8—N214.8 (5)C14—C15—C19—C110.4 (4)
C3—C4—C8—N2164.6 (3)C16—C15—C19—C11179.0 (3)
C8—N2—C9—O20.1 (3)C12—C11—C19—N3178.2 (3)
C8—N2—C9—C10179.2 (3)O3—C11—C19—N30.0 (4)
N1—O2—C9—N20.2 (3)C12—C11—C19—C150.7 (4)
N1—O2—C9—C10179.2 (3)O3—C11—C19—C15178.8 (2)
C11—O3—C10—C9175.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···N20.92 (5)2.05 (5)2.965 (3)174 (5)
OW—HWA···N30.88 (4)1.96 (4)2.840 (4)172 (4)
C10—H10A···OWi0.972.393.340 (4)165
C16—H16A···O1ii0.932.583.309 (4)135
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···N20.92 (5)2.05 (5)2.965 (3)174 (5)
OW—HWA···N30.88 (4)1.96 (4)2.840 (4)172 (4)
C10—H10A···OWi0.97002.39003.340 (4)165.00
C16—H16A···O1ii0.93002.58003.309 (4)135.00
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z1/2.
references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft. The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

Munoz-Muniz, O. & Juaristi, E. (2003). Tetrahedron, 59, 4223–4229.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shishue, C. & Henry, J. S. (1989). J. Heterocycl. Chem., 26, 125–128.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.