[Journal logo]

Volume 69 
Part 5 
Pages o691-o692  
May 2013  

Received 10 February 2013
Accepted 28 March 2013
Online 10 April 2013

Key indicators
Single-crystal X-ray study
T = 298 K
Mean [sigma](C-C) = 0.005 Å
Disorder in main residue
R = 0.071
wR = 0.198
Data-to-parameter ratio = 12.2
Details
Open access

N-{1,2-Bis(pyridin-3-yl)-2-[(E)-(pyridin-3-yl)methylideneamino]ethyl}nicotinamide

aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500 Tijuana, BC, Mexico, and bInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México, DF, 04510, Mexico
Correspondence e-mail: miguelhake@yahoo.com

In the title compound, C24H20N6O, the pyridin-3-yl groups on the ethylene fragment are found in a trans conformation with a C(py)-C(e)-C(e)-C(py) (py = pyridine, e = ethylene) torsion angle of 179.2 (3)°. The dihedral angle between the pyridine rings is 3.5 (1)°. In the crystal, N-H...N and C-H...O=C interactions form a layer arrangement parallel to the bc plane. The compound displays disorder of the ethylene fragment over two positions with an occupancy ratio of 0.676 (7) to 0.324 (7) that extends into the amide section of the nicotinamide moiety.

Related literature

For supramolecular structures, see: Nyburg & Wood (1964[Nyburg, S. C. & Wood, J. S. (1964). Inorg. Chem. 3, 468-476.]); House & Sadler (1973[House, D. A. & Sadler, W. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1937-1941.]); Koçak (2000[Koçak, M. (2000). Transition Met. Chem. 25, 231-233.]). For a related enantioselective catalyst, see: Jacobsen et al. (1990[Jacobsen, E. N., Zhang, W., Loebach, J. L. & Wilson, S. R. (1990). J. Am. Chem. Soc. 112, 2801-2803.]); Corey & Kühnle (1997[Corey, E. J. & Kühnle, F. (1997). Tetrahedron Lett. 38, 8631-8634.]); Corey et al. (1989[Corey, E. J., Imwinkelried, R., Pikul, S. & Xiang, Y. B. (1989). J. Am. Chem. Soc. 111, 5493-5495.]). For coordination compounds with polypyridine ligands related to the title compound, see: Parra-Hake et al. (2000[Parra-Hake, M., Larter, M. L., Gantzel, P., Aguirre, G., Ortega, F., Somanathan, R. & Walsh, P. J. (2000). Inorg. Chem. 39, 5400-5403.]); Cruz Enríquez et al. (2012[Cruz Enríquez, A., Figueroa Pérez, M. G., Almaral Sánchez, J. L., Höpfl, H., Parra-Hake, M. & Campos-Gaxiola, J. J. (2012). CrystEngComm, 14, 6146-6151.]). For the synthesis of analogous compounds, see: Proskurnina et al. (2002[Proskurnina, M. V., Lozinskaya, N. A., Tkachenko, S. E. & Zefirov, N. S. (2002). Russ. J. Org. Chem. 38, 1149-1153.]); Tu et al. (2009[Tu, S.-J., Ai, T., Jiang, B., Wang, X., Shi, F., Ballew, A. & Li, G. (2009). J. Org. Chem. 74, 9486-9489.]); Irving & Parkins (1965[Irving, M. N. H. & Parkins, R. M. (1965). J. Inorg. Nucl. Chem. 27, 270-271.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N6O

  • Mr = 408.46

  • Monoclinic, P 21 /c

  • a = 11.4868 (17) Å

  • b = 8.7275 (13) Å

  • c = 21.105 (3) Å

  • [beta] = 99.857 (3)°

  • V = 2084.6 (5) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.08 mm-1

  • T = 298 K

  • 0.28 × 0.26 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.984, Tmax = 0.992

  • 17508 measured reflections

  • 3821 independent reflections

  • 2371 reflections with I > 2[sigma](I)

  • Rint = 0.050

Refinement
  • R[F2 > 2[sigma](F2)] = 0.071

  • wR(F2) = 0.198

  • S = 1.02

  • 3821 reflections

  • 312 parameters

  • 48 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.34 e Å-3

  • [Delta][rho]min = -0.25 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N8-H8...N25i 0.84 (3) 2.33 (3) 3.168 (4) 174 (3)
C28-H28...O1ii 0.93 2.25 3.163 (16) 169
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2533 ).


Acknowledgements

This work was supported by the Dirección General de Educación Superior Tecnológica (DGEST) (grant No. 2785.09-P). Support from the Consejo Nacional de Ciencia y Tecnología (CONACyT) in the form of a graduate scholarship for CMQM is gratefully acknowledged. DMM would like to acknowledge Dr Alfredo Toscano for technical assistance.

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Corey, E. J., Imwinkelried, R., Pikul, S. & Xiang, Y. B. (1989). J. Am. Chem. Soc. 111, 5493-5495.  [CrossRef] [ChemPort] [ISI]
Corey, E. J. & Kühnle, F. (1997). Tetrahedron Lett. 38, 8631-8634.  [CSD] [CrossRef] [ChemPort] [ISI]
Cruz Enríquez, A., Figueroa Pérez, M. G., Almaral Sánchez, J. L., Höpfl, H., Parra-Hake, M. & Campos-Gaxiola, J. J. (2012). CrystEngComm, 14, 6146-6151.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
House, D. A. & Sadler, W. A. (1973). J. Chem. Soc. Dalton Trans. pp. 1937-1941.
Irving, M. N. H. & Parkins, R. M. (1965). J. Inorg. Nucl. Chem. 27, 270-271.  [CrossRef] [ChemPort] [ISI]
Jacobsen, E. N., Zhang, W., Loebach, J. L. & Wilson, S. R. (1990). J. Am. Chem. Soc. 112, 2801-2803.
Koçak, M. (2000). Transition Met. Chem. 25, 231-233.  [ISI] [CrossRef] [ChemPort]
Nyburg, S. C. & Wood, J. S. (1964). Inorg. Chem. 3, 468-476.  [CrossRef] [ChemPort] [ISI]
Parra-Hake, M., Larter, M. L., Gantzel, P., Aguirre, G., Ortega, F., Somanathan, R. & Walsh, P. J. (2000). Inorg. Chem. 39, 5400-5403.  [ISI] [PubMed] [ChemPort]
Proskurnina, M. V., Lozinskaya, N. A., Tkachenko, S. E. & Zefirov, N. S. (2002). Russ. J. Org. Chem. 38, 1149-1153.  [ISI] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [ChemPort] [details]
Tu, S.-J., Ai, T., Jiang, B., Wang, X., Shi, F., Ballew, A. & Li, G. (2009). J. Org. Chem. 74, 9486-9489.  [PubMed]


Acta Cryst (2013). E69, o691-o692   [ doi:10.1107/S1600536813008544 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.