[Journal logo]

Volume 69 
Part 5 
Pages m278-m279  
May 2013  

Received 25 February 2013
Accepted 13 April 2013
Online 20 April 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.004 Å
R = 0.035
wR = 0.091
Data-to-parameter ratio = 15.6
Details
Open access

Bis[4-chloro-2-(quinolin-8-yliminomethyl)phenolato-[kappa]3N,N',O]cobalt(III) trichloridomethanolcobaltate(II)

aCollege of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and bSchool of Chemistry & Chemical Engineering of Guangxi Normal University, Guilin 541004, People's Republic of China
Correspondence e-mail: ycliugxnu@yahoo.cn

The reaction of 4-chloro-2-(quinolin-8-yliminomethyl)phenol (HClQP) with cobalt(II) dichloride hexahydrate in methanol/chloroform under solvothermal conditions yielded the title compound, [Co(C16H10ClN2O)2][CoCl3(CH3OH)]. The CoIII atom is six-coordinated in a slightly distorted octahedral geometry by four N atoms and two O atoms of two tridentate HClQP ligands, which are nearly perpendicular to each other, making a dihedral angle of 86.95°. The CoII atom is four-coordinated by three Cl atoms and one O atom from a methanol ligand in a distorted tetrahedral geometry. The crystal packing is consolidated by intermolecular O-H...Cl, C-H...Cl and C-H...O hydrogen bonds, forming a three-dimensional supramolecular structure, in which [CoIICl3(CH3OH)] anions are connected via O-H...Cl and C-H...Cl hydrogen bonds into centrosymmetric dimers. Neighboring cobalt(III) complexes form dimers through C-H...O hydrogen bonds, as well as [pi]-[pi] stacking [centroid-centroid distances = 3.30 (2) Å] between the planar quinoline systems of one HClQP ligand and the phenolate ring of another.

Related literature

For the synthesis and analysis of the HClQP ligand, see: Donia & El-Boraey (1993[Donia, A. M. & El-Boraey, H. A. (1993). Transition Met. Chem. 18, 315-318.]), Sirirak et al. (2013[Sirirak, J., Phonsri, W., Harding, D. J., Harding, P., Phommon, P., Chaoprasa, W., Hendry, R. M., Roseveare, T. M. & Adams, H. (2013). J. Mol. Struct. 1036, 439-446.]). For related crystal structures of metal complexes of HClQP, see: Vasil'chenko et al. (1999[Vasil'chenko, I. S., Antsyshkina, A. S., Burlov, A. S., Sadikov, G. G., Uraev, A. I., Nivorozhkin, L. L., Garnovskii, D. A., Sergienko, V. S., Kurbatov, V. P., Korshunov, O. Yu. & Garnovskii, A. D. (1999). Russ. J. Inorg. Chem. 44, 1205-1213.]); Neves et al. (2009[Neves, A. I. S., Dias, J. C., Vieira, B. J. C., Santos, I. C., Castelo Branco, M. B., Pereira, L. C. J., Waerenborgh, J. C., Almeida, M., Belo, D. & da Gama, V. (2009). CrystEngComm, 11, 2160-2168.]). For applications of metal complexes of Schiff bases and their biological activity, catalytic reactions and photoelectric properties, see: Wu et al. (2009[Wu, P., Ma, D.-L., Leung, C.-H., Yan, S.-C., Zhu, N., Abagyan, R. & Che, C.-M. (2009). Chem. Eur. J. 15, 13008-13021.]); Zhuang et al. (2010[Zhuang, X., Oyaizu, K., Niu, Y., Koshika, K., Chen, X. & Nishide, H. (2010). Macromol. Chem. Phys. 211, 669-676.]); Leung et al. (2011[Leung, C.-F., Chen, Y.-Z., Yu, H.-Q., Yiu, S.-M., Ko, C.-C. & Lau, T.-C. (2011). Int. J. Hydrogen Energy, 36, 11640-11645.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C16H10ClN2O)2][CoCl3(CH4O)]

  • Mr = 819.67

  • Triclinic, [P \overline 1]

  • a = 12.0547 (6) Å

  • b = 12.1822 (4) Å

  • c = 13.2435 (7) Å

  • [alpha] = 65.156 (4)°

  • [beta] = 83.108 (4)°

  • [gamma] = 68.444 (4)°

  • V = 1640.06 (13) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 1.46 mm-1

  • T = 293 K

  • 0.40 × 0.20 × 0.12 mm

Data collection
  • Agilent SuperNova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.809, Tmax = 1.000

  • 14351 measured reflections

  • 6694 independent reflections

  • 5581 reflections with I > 2[sigma](I)

  • Rint = 0.025

Refinement
  • R[F2 > 2[sigma](F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.05

  • 6694 reflections

  • 428 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.42 e Å-3

  • [Delta][rho]min = -0.38 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O3-H3A...Cl4i 0.85 (2) 2.25 (2) 3.081 (3) 166 (2)
C1-H1...Cl3ii 0.93 2.72 3.532 (3) 146
C10-H10...O1iii 0.93 2.47 3.324 (3) 152
C33-H33A...Cl5i 0.96 2.82 3.745 (4) 161
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2537 ).


Acknowledgements

The authors thank the Small Highland Project for the Talents of the Medicinal Industry of Guangxi Province (No. 1108) and the Foundation of the State Key Laboratory Cultivation Base for Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2012-A11). We also thank Dr Fu-Ping Huang for assistance with the crystallography.

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [ISI] [CrossRef] [ChemPort] [details]
Donia, A. M. & El-Boraey, H. A. (1993). Transition Met. Chem. 18, 315-318.  [CrossRef] [ChemPort]
Leung, C.-F., Chen, Y.-Z., Yu, H.-Q., Yiu, S.-M., Ko, C.-C. & Lau, T.-C. (2011). Int. J. Hydrogen Energy, 36, 11640-11645.  [ISI] [CrossRef] [ChemPort]
Neves, A. I. S., Dias, J. C., Vieira, B. J. C., Santos, I. C., Castelo Branco, M. B., Pereira, L. C. J., Waerenborgh, J. C., Almeida, M., Belo, D. & da Gama, V. (2009). CrystEngComm, 11, 2160-2168.  [ISI] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Sirirak, J., Phonsri, W., Harding, D. J., Harding, P., Phommon, P., Chaoprasa, W., Hendry, R. M., Roseveare, T. M. & Adams, H. (2013). J. Mol. Struct. 1036, 439-446.  [ISI] [CSD] [CrossRef] [ChemPort]
Vasil'chenko, I. S., Antsyshkina, A. S., Burlov, A. S., Sadikov, G. G., Uraev, A. I., Nivorozhkin, L. L., Garnovskii, D. A., Sergienko, V. S., Kurbatov, V. P., Korshunov, O. Yu. & Garnovskii, A. D. (1999). Russ. J. Inorg. Chem. 44, 1205-1213.
Wu, P., Ma, D.-L., Leung, C.-H., Yan, S.-C., Zhu, N., Abagyan, R. & Che, C.-M. (2009). Chem. Eur. J. 15, 13008-13021.  [CSD] [CrossRef] [PubMed] [ChemPort]
Zhuang, X., Oyaizu, K., Niu, Y., Koshika, K., Chen, X. & Nishide, H. (2010). Macromol. Chem. Phys. 211, 669-676.  [ISI] [CrossRef] [ChemPort]


Acta Cryst (2013). E69, m278-m279   [ doi:10.1107/S1600536813010118 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.