[Journal logo]

Volume 69 
Part 5 
Pages m271-m272  
May 2013  

Received 7 April 2013
Accepted 14 April 2013
Online 20 April 2013

Key indicators
Single-crystal X-ray study
T = 291 K
Mean [sigma](C-C) = 0.006 Å
Disorder in solvent or counterion
R = 0.057
wR = 0.156
Data-to-parameter ratio = 14.2
Details
Open access

Di-[mu]-cyanido-tetracyanido(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)[N-(quinolin-8-yl)quinoline-2-carboxamidato]diiron(III)nickel(II) 2.07-hydrate

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
Correspondence e-mail: xiaopingshen@163.com

The asymmetric unit of the title complex, [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O, contains one [Fe(qcq)(CN)3]- anion, half a [Ni(teta)]2+ cation and two partially occupied interstitial water molecules [qcq- is the N-(quinolin-8-yl)quinoline-2-carboxamidate anion and teta is 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane]. In the complex molecule, two [Fe(qcq)(CN)3]- anions additionally coordinate the central [Ni(teta)]2+ cation through cyanide groups in a trans mode, resulting in a trinuclear structure with the Ni2+ cation lying on an inversion centre. The two interstitial water molecules are partially occupied, with occupancy factors of 0.528 (10) and 0.506 (9). O-H...O and O-H...N hydrogen bonding involving the two lattice water molecules and the carbonyl function and a teta N atom in an adjacent cluster leads to the formation of layers extending parallel to (010).

Related literature

For the synthesis and background to low-dimensional systems based on modified hexacyanidometalates, see: Liu et al. (2010[Liu, T., Zhang, Y. J., Kanegawa, S. & Sato, O. (2010). Angew. Chem. Int. Ed. 49, 8645-8648.]); Kim et al. (2009[Kim, J., Kwak, H. Y., Yoon, J. H., Ryu, D. W., Yoo, I. Y., Yang, N., Cho, B. K., Park, J. G., Lee, H. & Hong, C. S. (2009). Inorg. Chem. 48, 2956-2966.]); Curtis et al. (1964[Curtis, N. F. (1964). J. Chem. Soc. pp. 2644-2650.]). For related structures, see: Li et al. (2012[Li, Y., Zhou, H. & Shen, X. (2012). Acta Cryst. E68, o1688.]); Panja et al. (2012[Panja, A., Guionneau, P., Jeon, I., Holmes, S. M., Clérac, R. & Mathonière, C. (2012). Inorg. Chem. 51, 12350-12359.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2Ni(C19H12N3O)2(CN)6(C16H36N4)]·2.07H2O

  • Mr = 1244.89

  • Monoclinic, P 21 /c

  • a = 9.4145 (13) Å

  • b = 15.7309 (17) Å

  • c = 20.590 (2) Å

  • [beta] = 101.781 (3)°

  • V = 2985.1 (6) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.85 mm-1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Rigaku Saturn 724 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan.]) Tmin = 0.796, Tmax = 0.835

  • 12764 measured reflections

  • 5722 independent reflections

  • 4078 reflections with I > 2[sigma](I)

  • Rint = 0.022

Refinement
  • R[F2 > 2[sigma](F2)] = 0.057

  • wR(F2) = 0.156

  • S = 0.97

  • 5722 reflections

  • 402 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.42 e Å-3

  • [Delta][rho]min = -0.42 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O2W-H2WA...O1 0.82 (2) 2.14 (2) 2.882 (5) 151 (5)
O1W-H1WA...O2W 0.85 (2) 1.87 (7) 2.623 (8) 147 (11)
N8-H8A...O1Wi 0.91 2.19 3.091 (7) 169
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2544 ).


Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 51072071) for financial support.

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Curtis, N. F. (1964). J. Chem. Soc. pp. 2644-2650.  [CrossRef]
Higashi, T. (1995). ABSCOR. Rigaku Coporation, Tokyo, Japan.
Kim, J., Kwak, H. Y., Yoon, J. H., Ryu, D. W., Yoo, I. Y., Yang, N., Cho, B. K., Park, J. G., Lee, H. & Hong, C. S. (2009). Inorg. Chem. 48, 2956-2966.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]
Li, Y., Zhou, H. & Shen, X. (2012). Acta Cryst. E68, o1688.  [CSD] [CrossRef] [details]
Liu, T., Zhang, Y. J., Kanegawa, S. & Sato, O. (2010). Angew. Chem. Int. Ed. 49, 8645-8648.  [ISI] [CSD] [CrossRef] [ChemPort]
Panja, A., Guionneau, P., Jeon, I., Holmes, S. M., Clérac, R. & Mathonière, C. (2012). Inorg. Chem. 51, 12350-12359.  [ISI] [CSD] [CrossRef] [ChemPort]
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, m271-m272   [ doi:10.1107/S1600536813010234 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.