[Journal logo]

Volume 69 
Part 5 
Pages o654-o655  
May 2013  

Received 25 February 2013
Accepted 26 March 2013
Online 5 April 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.003 Å
R = 0.024
wR = 0.058
Data-to-parameter ratio = 36.3
Details
Open access

1,3-Diiodoazulene-2-carbonitrile

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

In the title compound, C11H5I2N, the two iodine-atom substitutents with their large atomic sizes lead to short intramolecular I...H distances (3.01 Å). In the crystal, the trisubstituted azulene system forms [pi]-stacks [centroid-centroid distance = 3.6343 (11) Å] along the a-axis direction, showing the characteristic azulene interaction mode between the electron-rich five-membered ring and the electron-deficient seven-membered ring. I...I [3.9129 (2) Å] non-covalent contacts are observed along with weak C-H...N and C-H...[pi]. bonds.

Related literature

For the naphthalene isomer azulene, see: Plattner & Pfau (1937[Plattner, P. A. & Pfau, A. S. (1937). Helv. Chim. Acta, 19, 858-879.]). For the use of azulene derivatives for medical purposes, see: Shi et al. (2011[Shi, W., Zuo, Z., Deng, C., Shi, C. & Xu, K. (2011). CN Patent No. 102114010.]). The synthesis of the title compound was performed starting from the azulene derivative 2-cyanoazulene (Nozoe et al., 1962[Nozoe, T., Seto, S. & Matsumura, S. (1962). Bull. Chem. Soc. Jpn, 35, 1990-1998.]). For the synthesis of related compounds, see Schmitt et al. (1998[Schmitt, S., Baumgarten, M., Simon, J. & Hafner, K. (1998). Angew. Chem. Int. Ed. 29, 1077-1081.]); Suzuka & Yasunami (2008[Suzuka, I. & Yasunami, M. (2008). Jpn Patent No. 2008285435.]). For related structures, see: Förster et al. (2012[Förster, S., Hahn, T., Loose, C., Röder, C., Liebing, S., Seichter, W., Ei\, F., Kortus, J. & Weber, E. (2012). J. Phys. Org. Chem. 25, 856-863.]); Hussain et al. (2005[Hussain, Z., Oeser, T. & Hopf, H. (2005). Acta Cryst. E61, o478-o479.]); Rahman et al. (2004[Rahman, M., Murafuji, T., Kurotobi, K. & Sugihara, Y. (2004). Organometallics, 23, 6176-6183.]). For halogen interactions in molecular crystal structures, see: Awwadi et al. (2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-896.]); Metrangolo et al. (2008[Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105-136.]). For weak C-H...N hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 29-123. Oxford University Press.]). For C-H...[pi] interactions, see: Nishio et al. (2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]).

[Scheme 1]

Experimental

Crystal data
  • C11H5I2N

  • Mr = 404.96

  • Monoclinic, P 21 /n

  • a = 4.2677 (1) Å

  • b = 14.9344 (4) Å

  • c = 16.7882 (4) Å

  • [beta] = 96.952 (1)°

  • V = 1062.14 (5) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 5.88 mm-1

  • T = 100 K

  • 0.52 × 0.07 × 0.03 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007)[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.] Tmin = 0.150, Tmax = 0.843

  • 17691 measured reflections

  • 4616 independent reflections

  • 3863 reflections with I > 2[sigma](I)

  • Rint = 0.023

Refinement
  • R[F2 > 2[sigma](F2)] = 0.024

  • wR(F2) = 0.058

  • S = 1.05

  • 4616 reflections

  • 127 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 1.48 e Å-3

  • [Delta][rho]min = -1.32 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg(C11-N1) is the mid-point of the C11-N1 bond.

D-H...A D-H H...A D...A D-H...A
C8-H8...N1i 0.95 2.62 3.400 (3) 139
C6-H6...Cg(C11-N1)i 0.95 2.76 3.63 (3) 152
Symmetry code: (i) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZP2002 ).


Acknowledgements

This work was performed within the Cluster of Excellence Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering (ADDE), which is financially supported by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK).

References

Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-896.  [CrossRef] [PubMed] [ChemPort]
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 29-123. Oxford University Press.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Förster, S., Hahn, T., Loose, C., Röder, C., Liebing, S., Seichter, W., Ei\, F., Kortus, J. & Weber, E. (2012). J. Phys. Org. Chem. 25, 856-863.
Hussain, Z., Oeser, T. & Hopf, H. (2005). Acta Cryst. E61, o478-o479.  [CSD] [CrossRef] [ChemPort] [details]
Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105-136.  [CrossRef] [ChemPort]
Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.  [ISI] [CrossRef] [ChemPort]
Nozoe, T., Seto, S. & Matsumura, S. (1962). Bull. Chem. Soc. Jpn, 35, 1990-1998.  [CrossRef] [ChemPort] [ISI]
Plattner, P. A. & Pfau, A. S. (1937). Helv. Chim. Acta, 19, 858-879.
Rahman, M., Murafuji, T., Kurotobi, K. & Sugihara, Y. (2004). Organometallics, 23, 6176-6183.  [ChemPort]
Schmitt, S., Baumgarten, M., Simon, J. & Hafner, K. (1998). Angew. Chem. Int. Ed. 29, 1077-1081.  [CrossRef]
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Shi, W., Zuo, Z., Deng, C., Shi, C. & Xu, K. (2011). CN Patent No. 102114010.
Suzuka, I. & Yasunami, M. (2008). Jpn Patent No. 2008285435.


Acta Cryst (2013). E69, o654-o655   [ doi:10.1107/S1600536813008301 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.