supplementary materials


zs2251 scheme

Acta Cryst. (2013). E69, o679    [ doi:10.1107/S1600536813008441 ]

1,3,5-Tris(bromomethyl)-2,4,6-trimethoxybenzene

N. Koch, W. Seichter and M. Mazik

Abstract top

There are three independent molecules in the asymmetric unit of the title compound, C12H15Br3O3, two of which have approximate trigonal symmetry, the third being conformationally different as it adopts near mirror symmetry. The crystal structure features C-H...Br interactions, a weak C-H...O hydrogen bond, [pi]-[pi] interactions [minimum ring centroid separation = 3.4927 (18) Å] and a short Br...Br contact [3.5894 (5) Å], resulting in a three-dimensional supramolecular network.

Comment top

1,3,5-Tris(bromomethyl)-2,4,6-trimethoxybenzene is widely used in modern synthetic chemistry, especially in supramolecular, macrocyclic and materials chemistry. For example, the trisubstituted 1,3,5-trimethoxybenzene scaffold finds application as a building block for organogelators (Li et al., 2005), macrocyclic cage compounds (Kim et al., 2005) and receptors for neutral or cationic guests (Holec et al., 2011; Whiting & Hof, 2012).

Our interest in the title compound, C12H15O3Br3, arises from its use in the synthesis of acyclic and macrocyclic receptors for biologically interesting species. This compound crystallizes in the space group P-1 with three independent molecules in the asymmetric unit (Fig. 1), two of which [the molecule with the C1–C6 ring and molecule B] adopt close to a trigonally symmetric conformation with all Br and methyl substituent groups oriented on one side of the aromatic ring (all cis). These molecules have a very approximate mirror symmetry (with atoms C7—C1···C4—O2 and C7B–C1B···C4B—O2B lying on the plane). The third conformational isomer (molecule A) can be described as 1,3-up, 5-down-tris(bromomethyl), 2-up, 4,6-down-trimethoxybenzene. Independent molecules participate in a different manner in intermolecular interactions. Pairs of inversion-related molecules with trigonal symmetry form face-to-face arene interactions with a minimum distance of 3.4927 (18) Å between the ring centroids. All molecules take part in the formation of C—H···Br hydrogen bonds [3.606 (3)–3.787 (3) Å, Table 1]. Moreover, the distance between the bromine atoms Br3 and Br1A [3.5894 (5) Å] and the well defined contact geometry [θ1 = 112.4°, θ2 = 155.1°] indicate the presence of a type II Br···Br interaction (Metrangolo & Resnati, 2008). The pattern of non-covalent intermolecular bonding is completed by a C11—H···O1A hydrogen bond [3.429 (4) Å].

Related literature top

For the synthesis and sample applications of the title compound, see: Li et al. (2005); Kim et al. (2005); Holec et al. (2011); Simaan et al. (2003); Whiting & Hof (2012). For hydrogen bonds, see: Desiraju (2002); Steiner (2002). For halogen bonding, see: Awwadi et al. (2006); Metrangolo & Resnati (2008).

Experimental top

The compound was prepared by a literature procedure with a slightly modified work-up (Li et al., 2005). 1,3,5-trimethoxybenzene (500 mg, 2.97 mmol) and paraformaldehyde (330 mg, 10.99 mmol) were finely powdered and suspended in 5 ml of glacial acetic acid and stirred for 1 hour at room temperature, after which 3.5 ml of hydrogen bromide (30 wt % in HOAc) was added and the mixture stirred at 70 °C in a pressure tube for 3 hours. After cooling to room temperature the mixture was poured in 20 ml of destilled water and the resulting suspension was diluted with dichlormethane until a clear solution was obtained. After phase separation the aqueous layer was extracted twice with dichlormethane. The combined organic extracts were washed with water, dried over magnesium sulfate and concentrated in vacuo. The desired compound was obtained as a white solid after flash chromatography (SiO2, CH2Cl2 / hexane 7:1, Rf 0.23) in 29 % yield (380 mg, 0.85 mmol). Analysis data: m.p. = 125 °C; 1H NMR (400 MHz, CDCl3) δ 4.14 (s, 9H, -OCH3), 4.60 (s, 6H, -CH2Br); 13C NMR (100 MHz, CDCl3) δ 22.45, 62.66, 123.29, 160.10; HR-ESI-MS (C12H15O3Br3): found 468.84501 [M+Na]+; calculated: 468.84434; Anal. Calcd (%) for C12H15O3Br3: C 32.25; H 3.38; found C 32.58; H 3.41. Suitable crystals of the title compound for X-ray analysis were obtained as colourless blocks by slow evaporation of a CDCl3 solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C) for methyl and C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C) for aryl methylene.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Atom numbering for the three independent molecules of the title compound in the asymmetric unit, showing 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the a axis. Intermolecular contacts are shown as dashed lines.
1,3,5-Tris(bromomethyl)-2,4,6-trimethoxybenzene top
Crystal data top
C12H15Br3O3Z = 6
Mr = 446.94F(000) = 1296
Triclinic, P1Dx = 2.039 Mg m3
Hall symbol: -P 1Melting point: 398 K
a = 9.7508 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.0974 (7) ÅCell parameters from 9450 reflections
c = 16.5500 (7) Åθ = 2.4–29.2°
α = 114.433 (2)°µ = 8.31 mm1
β = 92.903 (2)°T = 100 K
γ = 97.510 (2)°Block, colourless
V = 2184.29 (18) Å30.55 × 0.44 × 0.27 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
11474 independent reflections
Radiation source: fine-focus sealed tube9330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 28.9°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.092, Tmax = 0.213k = 2020
44729 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0264P)2 + 3.7624P]
where P = (Fo2 + 2Fc2)/3
11474 reflections(Δ/σ)max < 0.001
496 parametersΔρmax = 1.17 e Å3
0 restraintsΔρmin = 1.10 e Å3
Crystal data top
C12H15Br3O3γ = 97.510 (2)°
Mr = 446.94V = 2184.29 (18) Å3
Triclinic, P1Z = 6
a = 9.7508 (5) ÅMo Kα radiation
b = 15.0974 (7) ŵ = 8.31 mm1
c = 16.5500 (7) ÅT = 100 K
α = 114.433 (2)°0.55 × 0.44 × 0.27 mm
β = 92.903 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
11474 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
9330 reflections with I > 2σ(I)
Tmin = 0.092, Tmax = 0.213Rint = 0.034
44729 measured reflectionsθmax = 28.9°
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070Δρmax = 1.17 e Å3
S = 1.02Δρmin = 1.10 e Å3
11474 reflectionsAbsolute structure: ?
496 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.00621 (3)0.53065 (2)0.15704 (2)0.01897 (7)
Br20.37963 (3)0.50849 (2)0.298180 (19)0.02310 (7)
Br30.62290 (4)0.84512 (2)0.16701 (2)0.02290 (7)
O10.6269 (2)0.39201 (14)0.14146 (13)0.0159 (4)
O20.3537 (2)0.62713 (15)0.12679 (13)0.0175 (4)
O30.8075 (2)0.62276 (15)0.03078 (13)0.0175 (4)
C10.7213 (3)0.51009 (19)0.08885 (16)0.0117 (5)
C20.6141 (3)0.47348 (19)0.12529 (17)0.0116 (5)
C30.4904 (3)0.51168 (19)0.13990 (17)0.0114 (5)
C40.4777 (3)0.5919 (2)0.12020 (17)0.0126 (5)
C50.5847 (3)0.63304 (19)0.08661 (17)0.0119 (5)
C60.7045 (3)0.5906 (2)0.07095 (17)0.0125 (5)
C70.8445 (3)0.4616 (2)0.06466 (18)0.0149 (6)
H7A0.86920.46040.00700.018*
H7B0.82170.39250.05690.018*
C80.7034 (3)0.4162 (2)0.22684 (19)0.0184 (6)
H8A0.78860.46290.23540.028*
H8B0.72780.35600.22850.028*
H8C0.64570.44610.27450.028*
C90.3726 (3)0.4622 (2)0.16750 (18)0.0158 (6)
H9A0.37280.39020.13990.019*
H9B0.28410.47380.14450.019*
C100.3348 (3)0.6978 (2)0.2145 (2)0.0220 (6)
H10A0.32460.66500.25450.033*
H10B0.25100.72600.21080.033*
H10C0.41600.75060.23780.033*
C110.5653 (3)0.7161 (2)0.06288 (18)0.0170 (6)
H11A0.46610.70910.04140.020*
H11B0.62110.71330.01380.020*
C120.9015 (3)0.7114 (2)0.0875 (2)0.0199 (6)
H12A0.86980.76810.08260.030*
H12B0.99510.70660.06900.030*
H12C0.90350.72000.14960.030*
Br1A0.49210 (3)0.04165 (2)0.135857 (19)0.01964 (7)
Br2A0.15090 (4)0.16662 (2)0.10600 (3)0.03205 (9)
Br3A0.30371 (4)0.42815 (2)0.51703 (2)0.02858 (8)
O1A0.2461 (2)0.19509 (14)0.06502 (12)0.0166 (4)
O2A0.0067 (2)0.31567 (15)0.32249 (14)0.0187 (4)
O3A0.4567 (2)0.22737 (15)0.34440 (14)0.0190 (4)
C1A0.3562 (3)0.21360 (19)0.20460 (18)0.0127 (5)
C2A0.2423 (3)0.22089 (19)0.15496 (17)0.0121 (5)
C3A0.1271 (3)0.25851 (19)0.19418 (17)0.0123 (5)
C4A0.1243 (3)0.28472 (19)0.28527 (18)0.0135 (5)
C5A0.2333 (3)0.27421 (19)0.33681 (18)0.0142 (6)
C6A0.3492 (3)0.24041 (19)0.29556 (18)0.0131 (5)
C7A0.4828 (3)0.1800 (2)0.1627 (2)0.0176 (6)
H7A10.56650.22220.20350.021*
H7A20.48440.18860.10660.021*
C8A0.1973 (3)0.0915 (2)0.01111 (18)0.0196 (6)
H8A10.25010.05260.03220.029*
H8A20.21050.07560.05140.029*
H8A30.09820.07570.01590.029*
C9A0.0112 (3)0.2722 (2)0.14060 (19)0.0176 (6)
H9A10.04530.27430.08600.021*
H9A20.01800.33630.17580.021*
C10A0.0133 (4)0.4206 (2)0.3641 (2)0.0234 (7)
H10D0.08500.44970.41570.035*
H10E0.07720.43600.38400.035*
H10F0.03640.44770.32100.035*
C11A0.2225 (3)0.2920 (2)0.43150 (18)0.0185 (6)
H11C0.27090.24510.44490.022*
H11D0.12320.27890.43950.022*
C12A0.5650 (3)0.3111 (2)0.3896 (2)0.0247 (7)
H12D0.64940.29910.35980.037*
H12E0.58450.32160.45180.037*
H12F0.53480.36980.38790.037*
Br1B0.11391 (3)0.31688 (2)0.56329 (2)0.02455 (7)
Br2B0.06858 (4)0.00924 (3)0.18891 (2)0.03241 (9)
Br3B0.51099 (3)0.18450 (2)0.54894 (2)0.01948 (7)
O1B0.1658 (2)0.05465 (17)0.37834 (16)0.0261 (5)
O2B0.2856 (2)0.03484 (15)0.37591 (14)0.0199 (5)
O3B0.1524 (2)0.19733 (15)0.64356 (12)0.0183 (4)
C1B0.0038 (3)0.1345 (2)0.50967 (18)0.0134 (5)
C2B0.0329 (3)0.0707 (2)0.41889 (19)0.0147 (6)
C3B0.0642 (3)0.0156 (2)0.37157 (18)0.0144 (6)
C4B0.1936 (3)0.02553 (19)0.41748 (17)0.0114 (5)
C5B0.2266 (3)0.08767 (19)0.50829 (17)0.0109 (5)
C6B0.1270 (3)0.14209 (19)0.55285 (17)0.0113 (5)
C7B0.1125 (3)0.1851 (2)0.5607 (2)0.0206 (6)
H7B10.09710.19210.62280.025*
H7B20.20480.14380.53380.025*
C8B0.1914 (4)0.1133 (3)0.3320 (2)0.0293 (8)
H8B10.15530.18280.37060.044*
H8B20.29190.10510.31590.044*
H8B30.14470.09220.27770.044*
C9B0.0257 (4)0.0599 (2)0.27820 (19)0.0217 (7)
H9B10.07530.08550.26930.026*
H9B20.07610.11560.26860.026*
C10B0.3755 (3)0.0024 (2)0.3238 (2)0.0194 (6)
H10G0.31900.00550.27730.029*
H10H0.43530.05150.29580.029*
H10I0.43350.06090.36260.029*
C11B0.3590 (3)0.0895 (2)0.55699 (19)0.0152 (6)
H11E0.38460.02270.53170.018*
H11F0.34650.10770.62060.018*
C12B0.2247 (3)0.2960 (2)0.67127 (19)0.0209 (6)
H12G0.31220.29420.64440.031*
H12H0.24480.32790.73650.031*
H12I0.16650.33340.65180.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.00939 (14)0.02295 (15)0.02450 (15)0.00310 (11)0.00017 (11)0.01013 (12)
Br20.02417 (17)0.02506 (16)0.01819 (14)0.00046 (13)0.00854 (12)0.00773 (12)
Br30.03147 (19)0.01265 (14)0.02433 (15)0.00570 (12)0.01059 (13)0.00620 (12)
O10.0178 (11)0.0117 (9)0.0171 (10)0.0015 (8)0.0034 (8)0.0060 (8)
O20.0115 (10)0.0208 (10)0.0169 (10)0.0074 (8)0.0018 (8)0.0036 (8)
O30.0198 (11)0.0181 (10)0.0131 (9)0.0012 (8)0.0051 (8)0.0062 (8)
C10.0125 (14)0.0108 (12)0.0069 (11)0.0011 (10)0.0031 (10)0.0003 (10)
C20.0117 (14)0.0109 (12)0.0092 (12)0.0011 (10)0.0023 (10)0.0021 (10)
C30.0103 (13)0.0113 (12)0.0083 (11)0.0005 (10)0.0026 (10)0.0010 (10)
C40.0102 (14)0.0156 (13)0.0080 (11)0.0029 (11)0.0022 (10)0.0012 (10)
C50.0141 (14)0.0113 (12)0.0075 (11)0.0029 (10)0.0027 (10)0.0013 (10)
C60.0132 (14)0.0143 (13)0.0066 (11)0.0003 (11)0.0007 (10)0.0020 (10)
C70.0120 (14)0.0167 (14)0.0123 (12)0.0034 (11)0.0005 (11)0.0021 (11)
C80.0199 (16)0.0198 (15)0.0185 (14)0.0040 (12)0.0001 (12)0.0112 (12)
C90.0115 (14)0.0187 (14)0.0129 (12)0.0001 (11)0.0013 (11)0.0035 (11)
C100.0176 (16)0.0213 (15)0.0224 (15)0.0057 (13)0.0048 (13)0.0038 (12)
C110.0217 (16)0.0168 (14)0.0146 (13)0.0059 (12)0.0006 (12)0.0082 (11)
C120.0196 (16)0.0169 (14)0.0225 (15)0.0004 (12)0.0047 (13)0.0083 (12)
Br1A0.02175 (16)0.01827 (14)0.02136 (14)0.00848 (12)0.00611 (12)0.00893 (12)
Br2A0.01615 (17)0.02113 (16)0.0444 (2)0.00290 (13)0.00690 (14)0.00098 (14)
Br3A0.0378 (2)0.02262 (16)0.01586 (14)0.00243 (14)0.00652 (13)0.00207 (12)
O1A0.0254 (12)0.0141 (10)0.0123 (9)0.0040 (8)0.0052 (8)0.0070 (8)
O2A0.0153 (11)0.0169 (10)0.0224 (10)0.0039 (8)0.0077 (9)0.0061 (8)
O3A0.0194 (11)0.0167 (10)0.0228 (10)0.0000 (9)0.0052 (9)0.0119 (9)
C1A0.0129 (14)0.0090 (12)0.0182 (13)0.0013 (10)0.0031 (11)0.0077 (10)
C2A0.0164 (15)0.0090 (12)0.0112 (12)0.0005 (10)0.0029 (11)0.0052 (10)
C3A0.0121 (14)0.0096 (12)0.0144 (12)0.0016 (10)0.0010 (11)0.0055 (10)
C4A0.0133 (14)0.0097 (12)0.0179 (13)0.0013 (11)0.0049 (11)0.0060 (10)
C5A0.0194 (15)0.0090 (12)0.0128 (12)0.0022 (11)0.0018 (11)0.0045 (10)
C6A0.0149 (14)0.0097 (12)0.0162 (13)0.0014 (11)0.0005 (11)0.0081 (11)
C7A0.0157 (15)0.0175 (14)0.0231 (14)0.0019 (12)0.0052 (12)0.0121 (12)
C8A0.0232 (17)0.0195 (15)0.0120 (13)0.0013 (13)0.0006 (12)0.0038 (11)
C9A0.0174 (15)0.0156 (14)0.0191 (14)0.0020 (12)0.0011 (12)0.0073 (11)
C10A0.0230 (18)0.0214 (16)0.0205 (15)0.0105 (13)0.0019 (13)0.0017 (12)
C11A0.0242 (17)0.0133 (13)0.0161 (13)0.0016 (12)0.0007 (12)0.0058 (11)
C12A0.0166 (16)0.0233 (16)0.0326 (17)0.0037 (13)0.0067 (13)0.0135 (14)
Br1B0.02098 (17)0.01649 (14)0.03671 (17)0.00742 (12)0.00790 (14)0.01007 (13)
Br2B0.0393 (2)0.03877 (19)0.01701 (15)0.01025 (16)0.00771 (14)0.01582 (14)
Br3B0.00936 (14)0.02310 (15)0.02693 (15)0.00075 (11)0.00188 (11)0.01300 (12)
O1B0.0120 (11)0.0310 (12)0.0411 (13)0.0071 (9)0.0111 (10)0.0258 (11)
O2B0.0269 (12)0.0170 (10)0.0243 (11)0.0126 (9)0.0171 (9)0.0129 (9)
O3B0.0257 (12)0.0177 (10)0.0100 (9)0.0003 (9)0.0035 (8)0.0053 (8)
C1B0.0100 (14)0.0147 (13)0.0210 (13)0.0033 (11)0.0060 (11)0.0122 (11)
C2B0.0080 (13)0.0159 (13)0.0226 (14)0.0051 (11)0.0049 (11)0.0132 (12)
C3B0.0177 (15)0.0120 (13)0.0138 (12)0.0024 (11)0.0015 (11)0.0076 (11)
C4B0.0138 (14)0.0100 (12)0.0138 (12)0.0031 (10)0.0057 (11)0.0076 (10)
C5B0.0090 (13)0.0123 (12)0.0141 (12)0.0005 (10)0.0029 (10)0.0084 (10)
C6B0.0134 (14)0.0110 (12)0.0102 (12)0.0002 (10)0.0028 (10)0.0054 (10)
C7B0.0159 (16)0.0193 (15)0.0349 (17)0.0088 (12)0.0109 (13)0.0172 (13)
C8B0.0264 (19)0.0271 (17)0.0370 (19)0.0033 (14)0.0135 (15)0.0185 (15)
C9B0.0324 (19)0.0172 (14)0.0141 (13)0.0042 (13)0.0025 (13)0.0082 (12)
C10B0.0194 (16)0.0219 (15)0.0196 (14)0.0071 (12)0.0093 (12)0.0098 (12)
C11B0.0094 (14)0.0196 (14)0.0203 (14)0.0007 (11)0.0004 (11)0.0128 (12)
C12B0.0219 (17)0.0184 (15)0.0141 (13)0.0004 (12)0.0008 (12)0.0002 (11)
Geometric parameters (Å, º) top
Br1—C71.979 (3)C3A—C9A1.488 (4)
Br2—C91.973 (3)C7A—H7A10.9900
Br3—C111.980 (3)C7A—H7A20.9900
O1—C21.382 (3)C8A—H8A10.9800
O1—C81.443 (3)C8A—H8A20.9800
O2—C41.374 (3)C8A—H8A30.9800
O2—C101.441 (3)C9A—H9A10.9900
O3—C61.376 (3)C9A—H9A20.9900
O3—C121.437 (4)C10A—H10D0.9800
C1—C61.393 (4)C10A—H10E0.9800
C1—C21.397 (4)C10A—H10F0.9800
C1—C71.475 (4)C11A—H11C0.9900
C2—C31.393 (4)C11A—H11D0.9900
C3—C41.397 (4)C12A—H12D0.9800
C3—C91.483 (4)C12A—H12E0.9800
C4—C51.399 (4)C12A—H12F0.9800
C5—C61.390 (4)Br1B—C7B1.974 (3)
C5—C111.491 (4)Br2B—C9B1.964 (3)
C7—H7A0.9900Br3B—C11B1.973 (3)
C7—H7B0.9900O1B—C2B1.373 (3)
C8—H8A0.9800O1B—C8B1.425 (4)
C8—H8B0.9800O2B—C4B1.366 (3)
C8—H8C0.9800O2B—C10B1.437 (3)
C9—H9A0.9900O3B—C6B1.372 (3)
C9—H9B0.9900O3B—C12B1.433 (4)
C10—H10A0.9800C1B—C6B1.397 (4)
C10—H10B0.9800C1B—C2B1.398 (4)
C10—H10C0.9800C1B—C7B1.480 (4)
C11—H11A0.9900C2B—C3B1.394 (4)
C11—H11B0.9900C3B—C4B1.397 (4)
C12—H12A0.9800C3B—C9B1.483 (4)
C12—H12B0.9800C4B—C5B1.396 (4)
C12—H12C0.9800C5B—C6B1.394 (4)
Br1A—C7A1.963 (3)C5B—C11B1.478 (4)
Br3A—C11A1.977 (3)C7B—H7B10.9900
Br2A—C9A1.965 (3)C7B—H7B20.9900
O3A—C6A1.375 (3)C8B—H8B10.9800
O3A—C12A1.435 (4)C8B—H8B20.9800
O2A—C4A1.373 (3)C8B—H8B30.9800
O2A—C10A1.433 (4)C9B—H9B10.9900
O1A—C2A1.378 (3)C9B—H9B20.9900
O1A—C8A1.441 (3)C10B—H10G0.9800
C1A—C2A1.391 (4)C10B—H10H0.9800
C1A—C6A1.396 (4)C10B—H10I0.9800
C1A—C7A1.490 (4)C11B—H11E0.9900
C6A—C5A1.394 (4)C11B—H11F0.9900
C5A—C4A1.395 (4)C12B—H12G0.9800
C5A—C11A1.488 (4)C12B—H12H0.9800
C4A—C3A1.394 (4)C12B—H12I0.9800
C3A—C2A1.394 (4)
C2—O1—C8113.5 (2)H12D—C12A—H12E109.5
C4—O2—C10115.5 (2)O3A—C12A—H12F109.5
C6—O3—C12116.2 (2)H12D—C12A—H12F109.5
C6—C1—C2117.8 (3)H12E—C12A—H12F109.5
C6—C1—C7120.7 (2)C5A—C11A—Br3A112.86 (18)
C2—C1—C7121.4 (2)C5A—C11A—H11C109.0
O1—C2—C3118.7 (2)Br3A—C11A—H11C109.0
O1—C2—C1118.8 (2)C5A—C11A—H11D109.0
C3—C2—C1122.3 (2)Br3A—C11A—H11D109.0
C2—C3—C4117.8 (2)H11C—C11A—H11D107.8
C2—C3—C9120.3 (2)O2A—C10A—H10D109.5
C4—C3—C9121.6 (3)O2A—C10A—H10E109.5
O2—C4—C3119.9 (2)H10D—C10A—H10E109.5
O2—C4—C5118.3 (2)O2A—C10A—H10F109.5
C3—C4—C5121.6 (3)H10D—C10A—H10F109.5
C6—C5—C4118.4 (2)H10E—C10A—H10F109.5
C6—C5—C11121.3 (2)C3A—C9A—Br2A112.80 (19)
C4—C5—C11120.2 (3)C3A—C9A—H9A1109.0
O3—C6—C5120.6 (2)Br2A—C9A—H9A1109.0
O3—C6—C1117.2 (2)C3A—C9A—H9A2109.0
C5—C6—C1122.0 (2)Br2A—C9A—H9A2109.0
C1—C7—Br1111.74 (18)H9A1—C9A—H9A2107.8
C1—C7—H7A109.3O1A—C8A—H8A1109.5
Br1—C7—H7A109.3O1A—C8A—H8A2109.5
C1—C7—H7B109.3H8A1—C8A—H8A2109.5
Br1—C7—H7B109.3O1A—C8A—H8A3109.5
H7A—C7—H7B107.9H8A1—C8A—H8A3109.5
O1—C8—H8A109.5H8A2—C8A—H8A3109.5
O1—C8—H8B109.5C2B—O1B—C8B116.6 (2)
H8A—C8—H8B109.5C4B—O2B—C10B116.1 (2)
O1—C8—H8C109.5C6B—O3B—C12B115.2 (2)
H8A—C8—H8C109.5C6B—C1B—C2B118.0 (3)
H8B—C8—H8C109.5C6B—C1B—C7B120.6 (3)
C3—C9—Br2113.33 (19)C2B—C1B—C7B121.1 (3)
C3—C9—H9A108.9O1B—C2B—C3B119.4 (3)
Br2—C9—H9A108.9O1B—C2B—C1B118.3 (3)
C3—C9—H9B108.9C3B—C2B—C1B121.9 (3)
Br2—C9—H9B108.9C2B—C3B—C4B118.1 (2)
H9A—C9—H9B107.7C2B—C3B—C9B120.9 (3)
O2—C10—H10A109.5C4B—C3B—C9B120.6 (3)
O2—C10—H10B109.5O2B—C4B—C5B118.0 (2)
H10A—C10—H10B109.5O2B—C4B—C3B119.7 (2)
O2—C10—H10C109.5C5B—C4B—C3B121.9 (3)
H10A—C10—H10C109.5C6B—C5B—C4B118.1 (3)
H10B—C10—H10C109.5C6B—C5B—C11B121.1 (2)
C5—C11—Br3111.17 (18)C4B—C5B—C11B120.7 (2)
C5—C11—H11A109.4O3B—C6B—C5B119.1 (2)
Br3—C11—H11A109.4O3B—C6B—C1B118.6 (2)
C5—C11—H11B109.4C5B—C6B—C1B122.0 (2)
Br3—C11—H11B109.4C1B—C7B—Br1B113.00 (19)
H11A—C11—H11B108.0C1B—C7B—H7B1109.0
O3—C12—H12A109.5Br1B—C7B—H7B1109.0
O3—C12—H12B109.5C1B—C7B—H7B2109.0
H12A—C12—H12B109.5Br1B—C7B—H7B2109.0
O3—C12—H12C109.5H7B1—C7B—H7B2107.8
H12A—C12—H12C109.5O1B—C8B—H8B1109.5
H12B—C12—H12C109.5O1B—C8B—H8B2109.5
C6A—O3A—C12A116.2 (2)H8B1—C8B—H8B2109.5
C4A—O2A—C10A114.8 (2)O1B—C8B—H8B3109.5
C2A—O1A—C8A112.6 (2)H8B1—C8B—H8B3109.5
C2A—C1A—C6A117.8 (3)H8B2—C8B—H8B3109.5
C2A—C1A—C7A121.3 (2)C3B—C9B—Br2B113.29 (19)
C6A—C1A—C7A120.9 (3)C3B—C9B—H9B1108.9
O3A—C6A—C5A119.3 (2)Br2B—C9B—H9B1108.9
O3A—C6A—C1A118.6 (3)C3B—C9B—H9B2108.9
C5A—C6A—C1A122.0 (3)Br2B—C9B—H9B2108.9
C6A—C5A—C4A118.1 (2)H9B1—C9B—H9B2107.7
C6A—C5A—C11A120.7 (3)O2B—C10B—H10G109.5
C4A—C5A—C11A121.0 (3)O2B—C10B—H10H109.5
O2A—C4A—C3A118.1 (3)H10G—C10B—H10H109.5
O2A—C4A—C5A120.2 (2)O2B—C10B—H10I109.5
C3A—C4A—C5A121.6 (3)H10G—C10B—H10I109.5
C2A—C3A—C4A118.3 (3)H10H—C10B—H10I109.5
C2A—C3A—C9A120.9 (2)C5B—C11B—Br3B111.49 (18)
C4A—C3A—C9A120.8 (3)C5B—C11B—H11E109.3
O1A—C2A—C1A119.2 (2)Br3B—C11B—H11E109.3
O1A—C2A—C3A118.6 (2)C5B—C11B—H11F109.3
C1A—C2A—C3A122.1 (2)Br3B—C11B—H11F109.3
C1A—C7A—Br1A113.43 (18)H11E—C11B—H11F108.0
C1A—C7A—H7A1108.9O3B—C12B—H12G109.5
Br1A—C7A—H7A1108.9O3B—C12B—H12H109.5
C1A—C7A—H7A2108.9H12G—C12B—H12H109.5
Br1A—C7A—H7A2108.9O3B—C12B—H12I109.5
H7A1—C7A—H7A2107.7H12G—C12B—H12I109.5
O3A—C12A—H12D109.5H12H—C12B—H12I109.5
O3A—C12A—H12E109.5
C8—O1—C2—C399.1 (3)O2A—C4A—C3A—C9A5.3 (4)
C8—O1—C2—C185.4 (3)C5A—C4A—C3A—C9A178.7 (2)
C6—C1—C2—O1178.4 (2)C8A—O1A—C2A—C1A87.6 (3)
C7—C1—C2—O12.1 (4)C8A—O1A—C2A—C3A95.8 (3)
C6—C1—C2—C33.1 (4)C6A—C1A—C2A—O1A179.9 (2)
C7—C1—C2—C3173.1 (2)C7A—C1A—C2A—O1A0.9 (4)
O1—C2—C3—C4177.8 (2)C6A—C1A—C2A—C3A3.4 (4)
C1—C2—C3—C42.6 (4)C7A—C1A—C2A—C3A175.6 (2)
O1—C2—C3—C93.3 (4)C4A—C3A—C2A—O1A179.8 (2)
C1—C2—C3—C9172.0 (2)C9A—C3A—C2A—O1A1.0 (4)
C10—O2—C4—C385.7 (3)C4A—C3A—C2A—C1A3.3 (4)
C10—O2—C4—C599.5 (3)C9A—C3A—C2A—C1A175.6 (2)
C2—C3—C4—O2174.9 (2)C2A—C1A—C7A—Br1A101.2 (3)
C9—C3—C4—O20.4 (4)C6A—C1A—C7A—Br1A79.8 (3)
C2—C3—C4—C50.2 (4)C6A—C5A—C11A—Br3A90.0 (3)
C9—C3—C4—C5174.3 (2)C4A—C5A—C11A—Br3A94.2 (3)
O2—C4—C5—C6173.3 (2)C2A—C3A—C9A—Br2A101.2 (3)
C3—C4—C5—C61.5 (4)C4A—C3A—C9A—Br2A80.0 (3)
O2—C4—C5—C112.8 (4)C8B—O1B—C2B—C3B90.8 (3)
C3—C4—C5—C11177.6 (2)C8B—O1B—C2B—C1B95.9 (3)
C12—O3—C6—C580.3 (3)C6B—C1B—C2B—O1B173.1 (2)
C12—O3—C6—C1104.2 (3)C7B—C1B—C2B—O1B1.0 (4)
C4—C5—C6—O3174.3 (2)C6B—C1B—C2B—C3B0.1 (4)
C11—C5—C6—O31.7 (4)C7B—C1B—C2B—C3B174.2 (2)
C4—C5—C6—C10.9 (4)O1B—C2B—C3B—C4B173.0 (2)
C11—C5—C6—C1176.9 (2)C1B—C2B—C3B—C4B0.1 (4)
C2—C1—C6—O3176.7 (2)O1B—C2B—C3B—C9B0.1 (4)
C7—C1—C6—O30.5 (4)C1B—C2B—C3B—C9B173.0 (2)
C2—C1—C6—C51.3 (4)C10B—O2B—C4B—C5B100.6 (3)
C7—C1—C6—C5174.9 (2)C10B—O2B—C4B—C3B86.7 (3)
C6—C1—C7—Br183.6 (3)C2B—C3B—C4B—O2B173.0 (2)
C2—C1—C7—Br1100.3 (3)C9B—C3B—C4B—O2B0.1 (4)
C2—C3—C9—Br288.5 (3)C2B—C3B—C4B—C5B0.5 (4)
C4—C3—C9—Br297.1 (3)C9B—C3B—C4B—C5B172.4 (2)
C6—C5—C11—Br395.2 (3)O2B—C4B—C5B—C6B173.8 (2)
C4—C5—C11—Br388.8 (3)C3B—C4B—C5B—C6B1.1 (4)
C12A—O3A—C6A—C5A89.9 (3)O2B—C4B—C5B—C11B1.5 (4)
C12A—O3A—C6A—C1A93.9 (3)C3B—C4B—C5B—C11B174.1 (2)
C2A—C1A—C6A—O3A175.7 (2)C12B—O3B—C6B—C5B88.6 (3)
C7A—C1A—C6A—O3A5.4 (4)C12B—O3B—C6B—C1B97.7 (3)
C2A—C1A—C6A—C5A0.4 (4)C4B—C5B—C6B—O3B174.6 (2)
C7A—C1A—C6A—C5A178.6 (2)C11B—C5B—C6B—O3B0.6 (4)
O3A—C6A—C5A—C4A178.6 (2)C4B—C5B—C6B—C1B1.2 (4)
C1A—C6A—C5A—C4A2.5 (4)C11B—C5B—C6B—C1B174.1 (2)
O3A—C6A—C5A—C11A2.6 (4)C2B—C1B—C6B—O3B174.0 (2)
C1A—C6A—C5A—C11A173.4 (2)C7B—C1B—C6B—O3B0.1 (4)
C10A—O2A—C4A—C3A95.9 (3)C2B—C1B—C6B—C5B0.6 (4)
C10A—O2A—C4A—C5A88.1 (3)C7B—C1B—C6B—C5B173.6 (2)
C6A—C5A—C4A—O2A178.6 (2)C6B—C1B—C7B—Br1B93.5 (3)
C11A—C5A—C4A—O2A2.6 (4)C2B—C1B—C7B—Br1B92.5 (3)
C6A—C5A—C4A—C3A2.7 (4)C2B—C3B—C9B—Br2B93.7 (3)
C11A—C5A—C4A—C3A173.3 (2)C4B—C3B—C9B—Br2B93.5 (3)
O2A—C4A—C3A—C2A175.8 (2)C6B—C5B—C11B—Br3B97.1 (3)
C5A—C4A—C3A—C2A0.1 (4)C4B—C5B—C11B—Br3B87.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8A1···Br1A0.982.913.787 (3)150
C8—H8A···Br10.982.843.702 (3)148
C8—H8C···Br20.982.863.670 (3)140
C7B—H7B2···Br3Bi0.992.923.665 (3)133
C10—H10A···Br20.982.853.717 (3)149
C10—H10C···Br30.982.893.673 (3)138
C10A—H10D···Br3A0.982.783.659 (4)149
C10B—H10G···Br2B0.982.723.606 (3)151
C10B—H10I···Br3B0.982.863.663 (3)140
C11—H11B···O1Aii0.992.553.429 (4)148
C8B—H8B3···Br2B0.982.853.697 (4)146
C12B—H12G···Br3B0.982.833.702 (3)149
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8A1···Br1A0.982.913.787 (3)149.5
C8—H8A···Br10.982.843.702 (3)147.8
C8—H8C···Br20.982.863.670 (3)140.0
C7B—H7B2···Br3Bi0.992.923.665 (3)133.0
C10—H10A···Br20.982.853.717 (3)148.7
C10—H10C···Br30.982.893.673 (3)137.5
C10A—H10D···Br3A0.982.783.659 (4)149.4
C10B—H10G···Br2B0.982.723.606 (3)151.2
C10B—H10I···Br3B0.982.863.663 (3)139.5
C11—H11B···O1Aii0.992.553.429 (4)148.3
C8B—H8B3···Br2B0.982.853.697 (4)145.5
C12B—H12G···Br3B0.982.833.702 (3)149.4
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z.
Acknowledgements top

This work was supported by the Deutsche Forschungsgemeinschaft.

references
References top

Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Holec, J., Rybáček, J., Budešínsky, M., Pospíšil, L. & Holý, P. (2011). Monatsh. Chem. 142, 821–826.

Kim, J., Kim, Y., Park, N., Hahn, J. H. & Ahn, K. H. (2005). J. Org. Chem. 70, 7087–7092.

Li, H., Homan, E. A., Lampkins, A. J., Ghiviriga, I. & Castellano, R. K. (2005). Org. Lett. 7, 443–446.

Metrangolo, P. & Resnati, G. (2008). Halogen Bonding: Fundamentals and Applications. pp. 181–191. Berlin: Springer.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Simaan, S., Siegel, J. S. & Biali, S. (2003). J. Org. Chem. 68, 3699–3701.

Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.

Whiting, A. L. & Hof, F. (2012). Org. Biomol. Chem. 10, 6885–6892.