

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Phenoxyethyl benzoate

Mousa Al-Noaimi,^a* Ismail Warad,^b Salim F. Haddad,^c Ahmad Husein^b and Rami Shareiah^d

^aDepartment of Chemistry, Hashemite University, Zarqa 13115, Jordan, ^bDepartment of Chemistry, AN-Najah National University, Nablus, Palestinian Territories, ^cDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, and ^dDepartment of Basic Science, Allied Medical Science College, Applied Science Private University, PO Box 166, Amman 11931, Jordan Correspondence e-mail: manoaimi@hu.edu.jo

Received 9 April 2013; accepted 22 April 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.130; data-to-parameter ratio = 13.8.

In the title compound, $C_{15}H_{14}O_3$, the dihedral angle between the benzene rings is 75.85 (7)°. In the crystal, centrosymmetrically related molecules are weakly associated through pairs of interactions between a benzene ring and an O atom of the ester group [ring centroid \cdots O = 3.952 (7) Å], and through pairs of interactions between the other benzene ring and an O atom of the phenoxy group [ring centroid $\cdot \cdot \cdot O = 3.912$ (7) Å], giving chains extending along [110].

Related literature

For background information and related structures, see: Gandhi et al. (1995); Huang et al. (1996); Litera et al. (2006); Ruzicka et al. (2002); Sheehan & Umezaw (1973).

Experimental

Crystal data

$C_{15}H_{14}O_3$	V = 1284.2 (2) Å ³
$M_r = 242.26$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.4675 (10) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 10.1411 (10) Å	T = 293 K
c = 13.7792 (12) Å	$0.32 \times 0.26 \times 0.18 \text{ mm}$
$\beta = 103.895 \ (10)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur Eos CCD-detector diffractometer Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.995, T_{\max} = 0.997$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.130$ S = 1.022269 reflections

5089 measured reflections 2269 independent reflections 1479 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$

164 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.11$ e Å⁻³

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

The project was supported by AN-Najah National University and the Hashemite University (Jordan). The X-ray structural work was performed at Hamdi Mango Center for Scientific Research at The University of Jordan, Amman 11942. Jordan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2256).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308

Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.

Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.

Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.

Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o789 [https://doi.org/10.1107/S1600536813010878]

2-Phenoxyethyl benzoate

Mousa Al-Noaimi, Ismail Warad, Salim F. Haddad, Ahmad Husein and Rami Shareiah

S1. Comment

Phenoxyethyl benzoate has applications in the synthesis of e.g. oxazoles, imidazoles and benzoazzepines (Huang *et al.*, 1996; Gandhi *et al.*, 1995). Esters are also useful as photo-removable protecting groups for carboxylic acids in organic synthesis and biochemistry (Ruzicka *et al.*, 2002; Litera *et al.*, 2006; Sheehan & Umezaw, 1973). Keeping this in view, the title compound, $C_{15}H_{14}O_3$, was synthesized and its crystal structure is repored herein.

In the title compound (Fig. 1), the dihedral angle between the benzene rings is 75.85 (7)°. In the crystal, two centrosymmetrically related molecules are weakly associated through a pair of intermolecular interactions between a benzene ring [C1–C6] and an oxygen of the phenoxy group (O1*A*) [ring centroid(*Cg*)···O1*A* separation, 3.912 (7) Å] [for symmetry code (*A*): -*x*, -*y* + 1, -*z*]. In addition, the molecules are weakly associated through a similar pair of intermolecular interactions between the second benzene ring [C10–C15] and a carboxyl oxygen of the ester group (O2*B*) [ring centroid (*Cg*)···O2*B* separation, 3.952 (7) Å] [for symmetry code (*B*): -*x* + 1, -*y*, -*z*] (Fig. 2). The result is a chain structure extending across [110].

S2. Experimental

Benzoic acid (10.0 g, 0.08 mol) was mixed directly without solvent with 2-phenoxyethanol (11.0 g, 0.08 mol) and refluxed for 3 hours. The reaction was left at room temperature for 24 hours. The product was collected as crystals in 52% yield. The crystals were purified by washing several times with cold ethanol.

S3. Refinement

Hydrogen atoms were positioned geometrically with C—H = 0.93 Å (aromatic) or 0.98 Å (methylene) and allowed to ride in the refinement, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Molecular conformation and atom numbering scheme for the title compound. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are represented as small spheres of arbitrary radii.

The chain structure showing the ring centroid \cdots O associations [for symmetry code (A): -x, -y + 1, -z]; (B): -x + 1, -y, -z].

2-Phenoxyethyl benzoate

Crystal data

C₁₅H₁₄O₃ $M_r = 242.26$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.4675 (10) Å b = 10.1411 (10) Å c = 13.7792 (12) Å $\beta = 103.895 (10)^{\circ}$ $V = 1284.2 (2) \text{ Å}^3$ Z = 4

Data collection

Oxford Diffraction Xcalibur Eos CCD-detector diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.0534 pixels mm⁻¹ ω scans Absorption correction: analytical (*CrysAlis PRO*; Agilent, 2011) $T_{min} = 0.995, T_{max} = 0.997$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.130$ S = 1.022269 reflections F(000) = 512 $D_x = 1.253 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1664 reflections $\theta = 3.0-29.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KWedge, colourless $0.32 \times 0.26 \times 0.18 \text{ mm}$

5089 measured reflections 2269 independent reflections 1479 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 3.0^\circ$ $h = -11 \rightarrow 10$ $k = -9 \rightarrow 12$ $l = -12 \rightarrow 16$

164 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0531P)^2 + 0.042P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Special details

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.11 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.11 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ } SHELXL97 \ ({\rm Sheldrick,} \\ 2008), \ {\rm Fc}^* = {\rm kFc} [1 + 0.001 {\rm xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ {\rm Extinction \ coefficient: \ } 0.035 \ (3) \end{array}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O2	0.21934 (14)	0.06786 (14)	0.04977 (8)	0.0697 (5)
O1	0.10626 (13)	0.31548 (14)	-0.04881 (9)	0.0693 (4)
C1	0.0173 (2)	0.39845 (19)	-0.11534 (12)	0.0573 (5)
C10	0.37587 (19)	-0.11334 (19)	0.06159 (13)	0.0589 (5)
C9	0.3215 (2)	-0.0031 (2)	0.11219 (14)	0.0644 (5)
C7	0.0433 (2)	0.2408 (2)	0.01671 (14)	0.0703 (6)
H7A	-0.0199	0.1734	-0.0206	0.084*
H7B	-0.0148	0.2977	0.0484	0.084*
C8	0.1615 (2)	0.1781 (2)	0.09424 (14)	0.0786 (6)
H8A	0.2379	0.2417	0.1196	0.094*
H8B	0.1232	0.1479	0.1497	0.094*
O3	0.36163 (17)	0.02131 (18)	0.19998 (10)	0.0968 (6)
C2	-0.1322 (2)	0.4027 (2)	-0.13240 (14)	0.0683 (6)
H2A	-0.1804	0.3477	-0.0970	0.082*
C5	0.0077 (3)	0.5679 (2)	-0.23750 (14)	0.0793 (7)
H5A	0.0554	0.6235	-0.2728	0.095*
C6	0.0870 (2)	0.4820 (2)	-0.16825 (14)	0.0709 (6)
H6A	0.1879	0.4800	-0.1569	0.085*
C11	0.4723 (2)	-0.2012 (2)	0.11906 (17)	0.0810 (7)
H11A	0.5006	-0.1905	0.1881	0.097*
C15	0.3333 (2)	-0.1315 (2)	-0.04026 (15)	0.0737 (6)
H15A	0.2669	-0.0739	-0.0794	0.088*
C3	-0.2097 (2)	0.4898 (2)	-0.20273 (16)	0.0809 (7)
H3A	-0.3107	0.4923	-0.2147	0.097*
C4	-0.1402 (3)	0.5723 (2)	-0.25494 (15)	0.0808 (7)
H4A	-0.1934	0.6307	-0.3018	0.097*
C13	0.4865 (3)	-0.3199 (3)	-0.0267 (2)	0.1029 (8)
H13A	0.5257	-0.3886	-0.0564	0.123*
C14	0.3890 (3)	-0.2350 (2)	-0.08458 (18)	0.0943 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H14A	0.3603	-0.2471	-0.1534	0.113*
C12	0.5261 (3)	-0.3035 (3)	0.0747 (2)	0.1039 (9)
H12A	0.5904	-0.3628	0.1138	0.125*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
02	0.0937 (10)	0.0559 (9)	0.0580 (7)	0.0144 (8)	0.0151 (7)	0.0017 (7)
01	0.0707 (8)	0.0666 (9)	0.0747 (8)	0.0111 (7)	0.0255 (7)	0.0141 (7)
C1	0.0673 (12)	0.0505 (12)	0.0551 (10)	0.0079 (10)	0.0163 (9)	-0.0068 (9)
C10	0.0561 (11)	0.0540 (12)	0.0664 (12)	-0.0040 (10)	0.0146 (9)	0.0108 (10)
C9	0.0665 (12)	0.0659 (14)	0.0601 (11)	-0.0028 (11)	0.0139 (9)	0.0091 (11)
C7	0.0862 (14)	0.0593 (14)	0.0730 (12)	0.0087 (12)	0.0342 (10)	0.0017 (11)
C8	0.1139 (17)	0.0638 (14)	0.0627 (11)	0.0174 (13)	0.0303 (12)	0.0018 (11)
O3	0.1082 (12)	0.1176 (15)	0.0581 (8)	0.0162 (10)	0.0073 (8)	-0.0040 (9)
C2	0.0685 (13)	0.0602 (14)	0.0758 (12)	0.0002 (11)	0.0164 (10)	-0.0068 (11)
C5	0.1058 (18)	0.0711 (16)	0.0663 (12)	0.0138 (14)	0.0312 (12)	0.0101 (12)
C6	0.0747 (13)	0.0719 (15)	0.0716 (12)	0.0103 (12)	0.0284 (10)	0.0065 (12)
C11	0.0631 (13)	0.0809 (17)	0.0913 (15)	0.0054 (12)	0.0036 (11)	0.0145 (14)
C15	0.0933 (15)	0.0593 (14)	0.0717 (13)	0.0159 (12)	0.0262 (11)	0.0103 (11)
C3	0.0709 (13)	0.0768 (17)	0.0855 (14)	0.0073 (13)	0.0003 (12)	-0.0152 (14)
C4	0.1031 (18)	0.0686 (16)	0.0614 (12)	0.0196 (14)	0.0018 (12)	-0.0062 (11)
C13	0.107 (2)	0.0694 (17)	0.148 (2)	0.0217 (16)	0.0600 (19)	0.0079 (19)
C14	0.126 (2)	0.0727 (17)	0.0922 (15)	0.0136 (16)	0.0415 (14)	0.0034 (14)
C12	0.0790 (16)	0.089 (2)	0.139 (2)	0.0257 (15)	0.0167 (16)	0.0231 (19)

Geometric parameters (Å, °)

02—C9	1.339 (2)	C5—C4	1.364 (3)	
O2—C8	1.445 (2)	C5—C6	1.374 (3)	
01—C1	1.373 (2)	C5—H5A	0.9300	
O1—C7	1.415 (2)	С6—Н6А	0.9300	
C1—C2	1.379 (2)	C11—C12	1.364 (3)	
C1—C6	1.384 (3)	C11—H11A	0.9300	
C10-C15	1.376 (2)	C15—C14	1.381 (3)	
C10-C11	1.381 (3)	C15—H15A	0.9300	
С10—С9	1.474 (3)	C3—C4	1.370 (3)	
С9—ОЗ	1.203 (2)	С3—НЗА	0.9300	
С7—С8	1.491 (3)	C4—H4A	0.9300	
С7—Н7А	0.9700	C13—C12	1.367 (3)	
С7—Н7В	0.9700	C13—C14	1.369 (3)	
C8—H8A	0.9700	C13—H13A	0.9300	
C8—H8B	0.9700	C14—H14A	0.9300	
C2—C3	1.384 (3)	C12—H12A	0.9300	
C2—H2A	0.9300			
С9—О2—С8	115.63 (14)	C4—C5—H5A	119.7	
C1—O1—C7	117.97 (14)	С6—С5—Н5А	119.7	

O1—C1—C2	124.94 (18)	C5—C6—C1	120.2 (2)
O1—C1—C6	115.68 (17)	С5—С6—Н6А	119.9
C2—C1—C6	119.39 (18)	C1—C6—H6A	119.9
C15—C10—C11	119.3 (2)	C12-C11-C10	120.0 (2)
C15—C10—C9	122.27 (17)	C12—C11—H11A	120.0
C11—C10—C9	118.41 (18)	C10-C11-H11A	120.0
O3—C9—O2	122.7 (2)	C10-C15-C14	120.2 (2)
O3—C9—C10	124.74 (18)	C10—C15—H15A	119.9
O2—C9—C10	112.59 (16)	C14—C15—H15A	119.9
O1—C7—C8	109.06 (16)	C4—C3—C2	121.1 (2)
O1—C7—H7A	109.9	C4—C3—H3A	119.5
С8—С7—Н7А	109.9	С2—С3—НЗА	119.5
O1—C7—H7B	109.9	C5—C4—C3	119.3 (2)
С8—С7—Н7В	109.9	C5—C4—H4A	120.3
H7A—C7—H7B	108.3	C3—C4—H4A	120.3
O2—C8—C7	108.78 (15)	C12—C13—C14	120.0 (3)
O2—C8—H8A	109.9	C12—C13—H13A	120.0
С7—С8—Н8А	109.9	C14—C13—H13A	120.0
O2—C8—H8B	109.9	C13—C14—C15	119.7 (2)
С7—С8—Н8В	109.9	C13—C14—H14A	120.1
H8A—C8—H8B	108.3	C15—C14—H14A	120.1
C1—C2—C3	119.3 (2)	C11—C12—C13	120.7 (2)
C1—C2—H2A	120.3	C11—C12—H12A	119.7
C3—C2—H2A	120.3	C13—C12—H12A	119.7
C4—C5—C6	120.7 (2)		
C7C1C2	-8.7 (3)	O1—C1—C6—C5	179.26 (17)
C7C1C6	171.67 (16)	C2-C1-C6-C5	-0.3 (3)
C8—O2—C9—O3	1.1 (3)	C15—C10—C11—C12	1.0 (3)
C8-02-C9-C10	-179.74 (16)	C9—C10—C11—C12	-179.3 (2)
C15—C10—C9—O3	-175.5 (2)	C11—C10—C15—C14	-1.3 (3)
C11—C10—C9—O3	4.7 (3)	C9—C10—C15—C14	178.9 (2)
C15—C10—C9—O2	5.3 (3)	C1—C2—C3—C4	-0.5 (3)
C11—C10—C9—O2	-174.41 (17)	C6—C5—C4—C3	-0.2(3)
C1-01-C7-C8	-169.37 (15)	C2—C3—C4—C5	0.3 (3)
C9—O2—C8—C7	-176.41 (17)	C12—C13—C14—C15	1.3 (4)
01	-75.6 (2)	C10-C15-C14-C13	0.2 (4)
O1—C1—C2—C3	-179.05 (17)	C10-C11-C12-C13	0.5 (4)
C6—C1—C2—C3	0.5 (3)	C14—C13—C12—C11	-1.7 (4)
C4—C5—C6—C1	0.2 (3)		~ /