supplementary materials


bg2505 scheme

Acta Cryst. (2013). E69, o859    [ doi:10.1107/S1600536813012063 ]

(2E)-1-(5-Bromothiophen-2-yl)-3-(4-chlorophenyl)prop-2-en-1-one

H. D. Kavitha, K. R. Roopashree, S. B. Vepuri, H. C. Devarajegowda and V. B. Devaru

Abstract top

In the title compound, C13H8BrClOS, the thiophene and phenyl rings are inclined by 40.69 (11)° to each other. The crystal structure is characterized by C-H...[pi] interactions, which link the molecules into broad layers parallel to (100). Short Br...Cl contacts [3.698 (1) Å] link these layers along [100].

Comment top

Chalcones are alpha beta unsaturated ketones, widely distributed in nature and are extensively studied for their biological activity (Chun et al., 2001; Horng et al., 2003; Lopez et al., 2001; Mei et al., 2003). We report here the crystal structure of a bromo derivative of hetero aryl chalcone which has shown aldose reductase inhibition in the virtual screening study conducted by us.

The titlecompound (2E)-1-(5-bromo-2-thienyl)-3-(4- chlorophenyl)prop-2-en-1-one, C13H8Br Cl O S, presents a five-membered thiophene ring (S3\C14\···C17) and a phenyl ring (C5\C6\···C10) at 40.69 (11)° to each other (Fig 1). All intermolecular bond lengths and angles are within normal ranges (Vepuri et al., 2012; Li & Su, 1993). The crystal structure is characterized by C—H···π interactions (C10—H10···Cg2; C16—H16···Cg2, Cg2 = C5->C10) (Table 1) which link molecules into broad 2D structures parallel to (100). There are in addition short intermolecular Br1···Cl2 contacts of 3.698 (1) Å, which link these structures along [100]. (Fig 2)

Related literature top

For general background to chalcones, see: Chun et al. (2001); Horng et al. (2003); Lopez et al. (2001); Mei et al. (2003). For related structures, see: Vepuri et al. (2012); Li & Su (1993).

Experimental top

A mixture of 2-acetyl-5-BromoThiophene (0.01 mole) and 4-chlorobenzaldehyde (0.01 mole) were stirred in ethanol (30 ml) and then an aqueous solution of potassium hydroxide (40%,15 ml)was added to it. The mixture was kept over night at room temperature and then it was poured into crushed ice and acidified with dilute hydrochloric acid. The precipiteted chalcone was filtered and crystallized from ethanol.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound. Dashed lines represent C-H···π and Br···Cl bonds.
(2E)-1-(5-Bromothiophen-2-yl)-3-(4-chlorophenyl)prop-2-en-1-one top
Crystal data top
C13H8BrClOSF(000) = 648
Mr = 327.61Dx = 1.733 Mg m3
Monoclinic, P21/cMelting point: 399 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.235 (3) ÅCell parameters from 2202 reflections
b = 13.959 (3) Åθ = 2.0–25.0°
c = 5.9153 (11) ŵ = 3.63 mm1
β = 93.259 (3)°T = 293 K
V = 1255.9 (4) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3032 independent reflections
Radiation source: fine-focus sealed tube2204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1818
Tmin = 0.770, Tmax = 1.000k = 016
14247 measured reflectionsl = 07
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2986P]
where P = (Fo2 + 2Fc2)/3
2202 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H8BrClOSV = 1255.9 (4) Å3
Mr = 327.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.235 (3) ŵ = 3.63 mm1
b = 13.959 (3) ÅT = 293 K
c = 5.9153 (11) Å0.24 × 0.20 × 0.12 mm
β = 93.259 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3032 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2204 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.023
14247 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.40 e Å3
S = 1.05Δρmin = 0.29 e Å3
2202 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.876810 (18)0.34860 (2)0.10591 (6)0.06662 (15)
Cl20.03637 (5)0.36156 (7)0.68667 (14)0.0719 (3)
S30.67904 (4)0.34879 (5)0.04338 (10)0.04481 (18)
O40.48985 (13)0.37196 (16)0.1517 (3)0.0642 (6)
C50.13007 (16)0.37433 (18)0.5358 (4)0.0436 (6)
C60.12401 (15)0.41523 (19)0.3238 (4)0.0466 (6)
H60.07050.43810.26260.056*
C70.19854 (15)0.42171 (17)0.2044 (4)0.0421 (6)
H70.19430.44800.05980.051*
C80.28016 (15)0.39015 (16)0.2928 (4)0.0369 (5)
C90.28356 (16)0.35027 (16)0.5098 (4)0.0407 (6)
H90.33720.32920.57430.049*
C100.20961 (17)0.34157 (16)0.6295 (4)0.0431 (6)
H100.21290.31380.77270.052*
C110.35582 (15)0.39464 (17)0.1545 (4)0.0399 (5)
H110.34450.41120.00340.048*
C120.43893 (16)0.37794 (19)0.2184 (4)0.0450 (6)
H120.45440.36690.37060.054*
C130.50768 (17)0.37658 (18)0.0522 (4)0.0431 (6)
C140.59921 (15)0.37793 (16)0.1398 (4)0.0371 (5)
C150.63572 (16)0.40178 (19)0.3477 (4)0.0454 (6)
H150.60270.41940.46840.055*
C160.72770 (16)0.39728 (19)0.3626 (4)0.0464 (6)
H160.76250.41210.49220.056*
C170.75950 (15)0.36879 (17)0.1654 (4)0.0410 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03415 (18)0.0911 (3)0.0755 (2)0.00978 (13)0.01087 (14)0.00945 (16)
Cl20.0432 (4)0.1058 (7)0.0687 (5)0.0075 (4)0.0196 (3)0.0045 (4)
S30.0374 (4)0.0601 (4)0.0373 (3)0.0041 (3)0.0062 (3)0.0034 (3)
O40.0443 (11)0.1042 (17)0.0438 (11)0.0027 (10)0.0004 (8)0.0067 (10)
C50.0348 (13)0.0501 (14)0.0466 (14)0.0074 (11)0.0069 (11)0.0050 (12)
C60.0318 (13)0.0592 (17)0.0483 (15)0.0033 (11)0.0024 (10)0.0017 (12)
C70.0377 (13)0.0474 (14)0.0407 (13)0.0003 (11)0.0025 (10)0.0034 (11)
C80.0344 (12)0.0350 (12)0.0411 (13)0.0037 (10)0.0003 (10)0.0021 (10)
C90.0351 (13)0.0433 (14)0.0431 (14)0.0022 (10)0.0029 (11)0.0003 (10)
C100.0452 (14)0.0432 (14)0.0408 (14)0.0018 (11)0.0013 (11)0.0006 (10)
C110.0367 (13)0.0429 (13)0.0400 (13)0.0018 (10)0.0020 (10)0.0024 (10)
C120.0369 (14)0.0580 (15)0.0402 (13)0.0007 (11)0.0039 (11)0.0015 (11)
C130.0367 (13)0.0484 (14)0.0441 (15)0.0010 (11)0.0017 (11)0.0003 (11)
C140.0320 (12)0.0393 (13)0.0406 (13)0.0014 (10)0.0077 (10)0.0008 (10)
C150.0424 (14)0.0525 (16)0.0420 (14)0.0038 (11)0.0077 (11)0.0078 (11)
C160.0407 (14)0.0555 (16)0.0430 (14)0.0036 (12)0.0004 (11)0.0066 (12)
C170.0300 (12)0.0426 (13)0.0507 (14)0.0018 (10)0.0042 (10)0.0034 (11)
Geometric parameters (Å, º) top
Br1—C171.863 (2)C9—C101.370 (3)
Cl2—C51.735 (3)C9—H90.9300
S3—C171.713 (3)C10—H100.9300
S3—C141.723 (2)C11—C121.321 (3)
O4—C131.223 (3)C11—H110.9300
C5—C61.376 (4)C12—C131.477 (3)
C5—C101.381 (4)C12—H120.9300
C6—C71.374 (3)C13—C141.460 (3)
C6—H60.9300C14—C151.362 (3)
C7—C81.393 (3)C15—C161.400 (3)
C7—H70.9300C15—H150.9300
C8—C91.397 (3)C16—C171.348 (3)
C8—C111.452 (3)C16—H160.9300
C17—S3—C1490.57 (12)C12—C11—H11116.2
C6—C5—C10121.0 (2)C8—C11—H11116.2
C6—C5—Cl2119.8 (2)C11—C12—C13121.1 (2)
C10—C5—Cl2119.2 (2)C11—C12—H12119.5
C7—C6—C5118.8 (2)C13—C12—H12119.5
C7—C6—H6120.6O4—C13—C14120.3 (2)
C5—C6—H6120.6O4—C13—C12122.1 (2)
C6—C7—C8122.2 (2)C14—C13—C12117.6 (2)
C6—C7—H7118.9C15—C14—C13131.0 (2)
C8—C7—H7118.9C15—C14—S3111.04 (18)
C7—C8—C9117.2 (2)C13—C14—S3117.92 (18)
C7—C8—C11119.7 (2)C14—C15—C16113.7 (2)
C9—C8—C11123.1 (2)C14—C15—H15123.2
C10—C9—C8121.4 (2)C16—C15—H15123.2
C10—C9—H9119.3C17—C16—C15111.5 (2)
C8—C9—H9119.3C17—C16—H16124.3
C9—C10—C5119.4 (2)C15—C16—H16124.3
C9—C10—H10120.3C16—C17—S3113.23 (19)
C5—C10—H10120.3C16—C17—Br1127.2 (2)
C12—C11—C8127.6 (2)S3—C17—Br1119.61 (14)
C10—C5—C6—C71.0 (4)C11—C12—C13—C14167.3 (2)
Cl2—C5—C6—C7177.9 (2)O4—C13—C14—C15164.8 (3)
C5—C6—C7—C81.4 (4)C12—C13—C14—C1517.0 (4)
C6—C7—C8—C90.6 (4)O4—C13—C14—S312.8 (3)
C6—C7—C8—C11177.1 (2)C12—C13—C14—S3165.31 (18)
C7—C8—C9—C100.7 (3)C17—S3—C14—C150.3 (2)
C11—C8—C9—C10175.7 (2)C17—S3—C14—C13178.47 (19)
C8—C9—C10—C51.1 (4)C13—C14—C15—C16177.6 (2)
C6—C5—C10—C90.2 (4)S3—C14—C15—C160.2 (3)
Cl2—C5—C10—C9179.09 (18)C14—C15—C16—C170.8 (3)
C7—C8—C11—C12171.9 (3)C15—C16—C17—S31.0 (3)
C9—C8—C11—C1211.8 (4)C15—C16—C17—Br1177.94 (19)
C8—C11—C12—C13174.2 (2)C14—S3—C17—C160.8 (2)
C11—C12—C13—O414.5 (4)C14—S3—C17—Br1178.26 (15)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg2i0.932.873.557 (3)132
C16—H16···Cg2ii0.932.963.480 (3)117
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg2i0.932.873.557 (3)132
C16—H16···Cg2ii0.932.963.480 (3)117
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y, z+2.
Acknowledgements top

The authors thank Professor T. N. Guru Row, Soild State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his constant support and for the data collection.

references
References top

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chun, N. L., Hsin, K. H., Horng, H. K., Mei, F. H., Hsien, C. L., Ya, L. C., Mei, I. C., Jaw, J. K., Jih, P. W. & Che, M. T. (2001). Drug Dev. Res. 53, 9–14.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Horng, H. K., Lo, T. T., Kun, L. Y., Cheng, T. L., Jih, P. W. & Chun, N. L. (2003). Bioorg. Med. Chem. 1, 105–111.

Li, Z. & Su, G. (1993). Acta Cryst. C49, 1075–1077.

Lopez, S. N., Castelli, M. V., Zacchino, S. A., Dominguez, J. N., Lobo, G., Charris, C. J., Cortés, J. C., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). Bioorg. Med. Chem. 9, 1999–2013.

Mei, L., Prapon, W., Simon, L. C., Agnes, L. C. T. & Mei, L. G. (2003). Bioorg. Med. Chem. 11, 2729–2738.

Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Vepuri, S. B., Devarajegowda, H. C., Jeyaseelan, S., Anbazhagan, S. & Prasad, Y. R. (2012). Acta Cryst. E68, o3456.