Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N^{\prime}-Hydroxypyridine-2-carboximida-mide-succinic acid (2/1)

Jiyong Liu

Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027,
People's Republic of China
Correspondence e-mail: shawnlau.zj@hotmail.com

Received 14 May 2013; accepted 24 May 2013

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.039 ; w R$ factor $=0.106$; data-to-parameter ratio $=12.4$.

The asymmetric unit of the title co-crystal, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$-$0.5 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$, comprises one N^{\prime}-hydroxypyridine-2-carboximidamide molecule and half a succinic acid molecule (the whole molecule is generated by inversion symmetry). In the crystal, molecules are assembled into columns along [110], via strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Related literature

For background to cocrystals and their applications, see: Biradha et al. (2009); Desiraju $(1995,2003)$.

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O} \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$
$M_{r}=196.19$
Monoclinic, $P 2_{1} / c$
$a=8.6707$ (8) A
$b=5.2628$ (4) \AA
$c=20.6693$ (15) A
$\beta=93.014(7)^{\circ}$

Data collection

Oxford Diffraction Xcalibur (Atlas, Gemini ultra) diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)
$T_{\text {min }}=0.966, T_{\text {max }}=0.984$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.106$
$S=1.05$
1733 reflections
140 parameters
4 restraints

4220 measured reflections
1733 independent reflections
1255 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3A $\cdots \mathrm{N} 3$	$0.84(1)$	$1.80(1)$	$2.6362(18)$	$175(2)$
O1-H1 \cdots O2	$0.83(1)$	$1.96(1)$	$2.7608(18)$	$164(2)$
N2-H2B \cdots O1 $^{\mathrm{i}}$	$0.86(1)$	$2.26(1)$	$3.025(2)$	$149(2)$

Symmetry code: (i) $-x+1,-y+2,-z+1$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

This project was supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105) and the Education Department of Zhejiang Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2507).

References

Biradha, K., Roy, S. \& Mahata, G. (2009). Cryst. Growth Des. 9, 5006-5008.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.
Desiraju, G. R. (2003). J. Mol. Struct. 656, 5-15.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o992 [doi:10.1107/S1600536813014359]

N^{\prime}-Hydroxypyridine-2-carboximidamide-succinic acid (2/1)

Jiyong Liu

S1. Comment

There has been an instense interest in the preparation of cocrystals which is evident from the increasing number of research publications on this topic in recent years. With reliable strategies, cocrystals could offer a modular approach to delvelping materials with desirable properties.(Desiraju, 1995, 2003; Biradha et al., 2009) Cocrystals are created by utilizing weak noncovalent interactions such as hydrogen bonds. Herein we report the structure of the first cocrystal of the pyC($\left.\mathrm{NH}_{2}\right) \mathrm{NOH}$ molecule.
The asymmetric unit of the title compound (Fig.1) contains one pyC(NH_{2}) NOH molecule and one half succinic acid molecule (the entire molecule is completed by the application of a centre of inversion). The pyridine rings and the N 2 -C6-N3-O1 rings are nearly coplanar, and the $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8$ - $\mathrm{C} 7{ }^{\mathrm{ii}}$ torsion angle [Symmetry codes: (ii) $-x,-y,-z+1$] of succinic acid is 180° restricted by crystallographic centrosymmetry. The proton of the carboxylate O atom (O3) of the succinic acid molecule forms a strong hydrogen bond with atom N 3 of the $\mathrm{pyC}\left(\mathrm{NH}_{2}\right) \mathrm{NOH}$ molecule, at the same time, hydrogen bonding exist between hydroxyl O 1 and carboxylater O 2 atoms.(see Table 1 for hydrogen bond geometry). In addition, strong intermolecular $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1^{\mathrm{i}}$ [Symmetry codes: (i) $-x+1,-y+2,-z+1$] hydrogen bonding supplement intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding to form columns running parallel to the [110] direction. (Fig 2)

S2. Experimental

A stoichiometric amount in the ratio of $2: 1$ of $\mathrm{pyC}\left(\mathrm{CH}_{2}\right) \mathrm{NOH}$ and succinic acid were dissolved in 20 ml e thanol, and the solution slowly left to evaporate to afford colourless block-like crystals after one week.

S3. Refinement

H atoms bonded to C atoms were placed in geometrically calculated positions and were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The N -bound and O -bound H atoms were located in the difference map and coordinates refined freely together with their isotropic displacement parameters.

Figure 1
ORTEP view of the title compound. The displacement ellipsoids are drawn at 30% probability level. Symmetry code: (ii) $-\mathrm{x},-\mathrm{y},-\mathrm{z}+1$.

Figure 2
The one-dimensional chain of the compound along [110] direction. Symmetry code: (i) $-\mathrm{x}+1,-\mathrm{y}+2,-\mathrm{z}+1$

N^{\prime}-Hydroxypyridine-2-carboximidamide-succinic acid (2/1)

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O} \cdot 0.5 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$
$M_{r}=196.19$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.6707$ (8) \AA
$b=5.2628$ (4) \AA
$c=20.6693$ (15) \AA
$\beta=93.014$ (7) ${ }^{\circ}$
$V=941.87(13) \AA^{3}$
$Z=4$

Data collection

Oxford Diffraction Xcalibur (Atlas, Gemini ultra)
diffractometer
Radiation source: fine-focus sealed tube
$F(000)=412$
$D_{\mathrm{x}}=1.384 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1508 reflections
$\theta=3.0-29.6^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.32 \times 0.28 \times 0.15 \mathrm{~mm}$

Graphite monochromator
Detector resolution: 10.3592 pixels mm^{-1}
ω scans

Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
$T_{\min }=0.966, T_{\text {max }}=0.984$
4220 measured reflections
1733 independent reflections
1255 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.106$
$S=1.05$
1733 reflections
140 parameters
4 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-5 \rightarrow 6$
$l=-24 \rightarrow 20$

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0475 P)^{2}+0.0833 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.16$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.106 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.39704(16)$	$0.7215(3)$	$0.47132(6)$	$0.0554(4)$
H1	$0.352(3)$	$0.597(3)$	$0.4861(11)$	0.083^{*}
O2	$0.19671(16)$	$0.3449(3)$	$0.50695(6)$	$0.0595(4)$
O3	$0.11775(15)$	$0.3628(3)$	$0.40307(6)$	$0.0527(4)$
H3A	$0.182(2)$	$0.482(3)$	$0.4024(11)$	0.079^{*}
N1	$0.36547(19)$	$1.1544(3)$	$0.27768(7)$	$0.0536(5)$
N2	$0.4806(2)$	$1.0874(3)$	$0.39785(8)$	$0.0546(5)$
H2A	$0.497(2)$	$1.209(3)$	$0.3713(8)$	0.066^{*}
H2B	$0.517(2)$	$1.079(4)$	$0.4370(6)$	0.066^{*}
N3	$0.32452(17)$	$0.7305(3)$	$0.40829(6)$	$0.0429(4)$
C1	$0.3146(3)$	$1.1925(4)$	$0.21617(10)$	$0.0630(6)$
H1A	0.3535	1.3306	0.1942	0.076^{*}
C2	$0.2086(3)$	$1.0397(4)$	$0.18374(10)$	$0.0623(6)$
H2	0.1772	1.0720	0.1408	0.075^{*}
C3	$0.1503(3)$	$0.8383(4)$	$0.21632(10)$	$0.0691(7)$
H3	0.0768	0.7322	0.1961	0.083^{*}
C4	$0.2017(3)$	$0.7947(4)$	$0.27915(10)$	$0.0589(6)$
H4	0.1639	0.6578	0.3020	0.071^{*}

C5	$0.30971(19)$	$0.9554(3)$	$0.30816(8)$	$0.0394(4)$
C6	$0.37353(19)$	$0.9207(3)$	$0.37593(8)$	$0.0375(4)$
C7	$0.1144(2)$	$0.2691(3)$	$0.46188(8)$	$0.0404(4)$
C8	$-0.0020(2)$	$0.0614(3)$	$0.46712(8)$	$0.0450(5)$
H8A	0.0166	-0.0675	0.4349	0.054^{*}
H8B	-0.1043	0.1305	0.4575	0.054^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0678(9)$	$0.0588(9)$	$0.0376(7)$	$-0.0209(7)$	$-0.0147(6)$	$0.0097(6)$
O2	$0.0687(9)$	$0.0703(9)$	$0.0387(7)$	$-0.0310(8)$	$-0.0055(7)$	$0.0058(7)$
O3	$0.0573(9)$	$0.0596(9)$	$0.0402(7)$	$-0.0211(7)$	$-0.0069(6)$	$0.0095(7)$
N1	$0.0545(10)$	$0.0596(10)$	$0.0466(10)$	$-0.0103(8)$	$0.0023(8)$	$0.0131(8)$
N2	$0.0664(11)$	$0.0567(11)$	$0.0400(9)$	$-0.0249(9)$	$-0.0048(8)$	$0.0050(8)$
N3	$0.0482(9)$	$0.0450(9)$	$0.0347(8)$	$-0.0081(7)$	$-0.0070(6)$	$0.0036(7)$
C1	$0.0607(13)$	$0.0774(15)$	$0.0508(13)$	$-0.0053(12)$	$0.0014(10)$	$0.0252(11)$
C2	$0.0659(14)$	$0.0788(15)$	$0.0410(11)$	$0.0078(12)$	$-0.0075(10)$	$0.0142(11)$
C3	$0.0829(16)$	$0.0678(14)$	$0.0534(13)$	$-0.0107(12)$	$-0.0279(12)$	$0.0085(11)$
C4	$0.0737(14)$	$0.0512(12)$	$0.0496(12)$	$-0.0162(10)$	$-0.0176(10)$	$0.0112(10)$
C5	$0.0412(10)$	$0.0391(10)$	$0.0378(10)$	$0.0007(8)$	$0.0011(8)$	$0.0016(8)$
C6	$0.0390(10)$	$0.0371(9)$	$0.0365(9)$	$-0.0042(8)$	$0.0016(7)$	$-0.0013(8)$
C7	$0.0411(10)$	$0.0433(10)$	$0.0370(10)$	$0.0000(8)$	$0.0024(8)$	$0.0003(8)$
C8	$0.0432(10)$	$0.0467(11)$	$0.0448(10)$	$-0.0094(8)$	$0.0002(8)$	$0.0020(8)$

Geometric parameters ($A,{ }^{\circ}$)

O1-N3	1.4173 (17)	C1-H1A	0.9300
O1-H1	0.828 (10)	C2-C3	1.367 (3)
$\mathrm{O} 2-\mathrm{C} 7$	1.211 (2)	C2-H2	0.9300
$\mathrm{O} 3-\mathrm{C} 7$	1.314 (2)	C3-C4	1.370 (3)
O3-H3A	0.840 (10)	C3-H3	0.9300
N1-C5	1.327 (2)	C4-C5	1.376 (3)
N1-C1	1.339 (2)	C4-H4	0.9300
N2-C6	1.339 (2)	C5-C6	1.490 (2)
N2—H2A	0.859 (9)	C7-C8	1.495 (2)
N2-H2B	0.856 (9)	C8-C8 ${ }^{\text {i }}$	1.503 (3)
N3-C6	1.288 (2)	C8-H8A	0.9700
C1-C2	1.370 (3)	C8-H8B	0.9700
N3-O1-H1	99.8 (16)	C3-C4-H4	120.3
$\mathrm{C} 7-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	110.1 (16)	C5-C4-H4	120.3
C5-N1-C1	117.31 (17)	N1-C5-C4	122.36 (16)
C6-N2-H2A	114.0 (14)	N1-C5-C6	114.61 (15)
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.2 (14)	C4-C5-C6	123.04 (16)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	125 (2)	N3-C6-N2	125.12 (16)
C6-N3-O1	111.14 (13)	N3-C6-C5	117.83 (14)
N1-C1-C2	123.79 (19)	N2-C6-C5	117.03 (15)

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	118.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	118.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.03(18)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	121.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.1(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.35(19)$

$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 3$	$123.17(16)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8$	$123.90(16)$
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8$	$112.93(15)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8$	$113.34(18)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	108.9
$\mathrm{C} 8-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	108.9
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	108.9
$\mathrm{C} 8-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	108.9
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	107.7

Symmetry code: (i) $-x,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 A \cdots \mathrm{~N} 3$	$0.84(1)$	$1.80(1)$	$2.6362(18)$	$175(2)$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2$	$0.83(1)$	$1.96(1)$	$2.7608(18)$	$164(2)$
$\mathrm{N} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.86(1)$	$2.26(1)$	$3.025(2)$	$149(2)$

Symmetry code: (ii) $-x+1,-y+2,-z+1$.

