organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Hy­dr­oxy­pyridine-2-carboximidamide–succinic acid (2/1)

aDepartment of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: shawnlau.zj@hotmail.com

(Received 14 May 2013; accepted 24 May 2013; online 31 May 2013)

The asymmetric unit of the title co-crystal, C6H7N3O·0.5C4H6O4, comprises one N′-hy­droxy­pyridine-2-carboximidamide mol­ecule and half a succinic acid mol­ecule (the whole molecule is generated by inversion symmetry). In the crystal, mol­ecules are assembled into columns along [110], via strong N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For background to cocrystals and their applications, see: Biradha et al. (2009[Biradha, K., Roy, S. & Mahata, G. (2009). Cryst. Growth Des. 9, 5006-5008.]); Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.], 2003[Desiraju, G. R. (2003). J. Mol. Struct. 656, 5-15.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N3O·0.5C4H6O4

  • Mr = 196.19

  • Monoclinic, P 21 /c

  • a = 8.6707 (8) Å

  • b = 5.2628 (4) Å

  • c = 20.6693 (15) Å

  • β = 93.014 (7)°

  • V = 941.87 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.966, Tmax = 0.984

  • 4220 measured reflections

  • 1733 independent reflections

  • 1255 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.05

  • 1733 reflections

  • 140 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N3 0.84 (1) 1.80 (1) 2.6362 (18) 175 (2)
O1—H1⋯O2 0.83 (1) 1.96 (1) 2.7608 (18) 164 (2)
N2—H2B⋯O1i 0.86 (1) 2.26 (1) 3.025 (2) 149 (2)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

There has been an instense interest in the preparation of cocrystals which is evident from the increasing number of research publications on this topic in recent years. With reliable strategies, cocrystals could offer a modular approach to delvelping materials with desirable properties.(Desiraju, 1995, 2003; Biradha et al., 2009) Cocrystals are created by utilizing weak noncovalent interactions such as hydrogen bonds. Herein we report the structure of the first cocrystal of the pyC(NH2)NOH molecule.

The asymmetric unit of the title compound (Fig.1) contains one pyC(NH2)NOH molecule and one half succinic acid molecule (the entire molecule is completed by the application of a centre of inversion). The pyridine rings and the N2—C6—N3—O1 rings are nearly coplanar, and the C7—C8—C8ii—C7ii torsion angle [Symmetry codes: (ii)-x, -y, -z + 1] of succinic acid is 180° restricted by crystallographic centrosymmetry. The proton of the carboxylate O atom (O3) of the succinic acid molecule forms a strong hydrogen bond with atom N3 of the pyC(NH2)NOH molecule, at the same time, hydrogen bonding exist between hydroxyl O1 and carboxylater O2 atoms.(see Table 1 for hydrogen bond geometry). In addition, strong intermolecular N2—H2B···O1i [Symmetry codes: (i)-x + 1, -y + 2, -z + 1] hydrogen bonding supplement intermolecular O—H···O and O—H···N hydrogen bonding to form columns running parallel to the [110] direction. (Fig 2)

Related literature top

For background to cocrystals and their applications, see: Biradha et al. (2009); Desiraju (1995, 2003).

Experimental top

A stoichiometric amount in the ratio of 2:1 of pyC(CH2)NOH and succinic acid were dissolved in 20 ml e thanol, and the solution slowly left to evaporate to afford colourless block-like crystals after one week.

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated positions and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). The N-bound and O-bound H atoms were located in the difference map and coordinates refined freely together with their isotropic displacement parameters.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The displacement ellipsoids are drawn at 30% probability level. Symmetry code: (ii) -x, -y, -z+1.
[Figure 2] Fig. 2. The one-dimensional chain of the compound along [110] direction. Symmetry code: (i) -x+1, -y+2, -z+1
N'-Hydroxypyridine-2-carboximidamide–succinic acid (2/1) top
Crystal data top
C6H7N3O·0.5C4H6O4F(000) = 412
Mr = 196.19Dx = 1.384 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1508 reflections
a = 8.6707 (8) Åθ = 3.0–29.6°
b = 5.2628 (4) ŵ = 0.11 mm1
c = 20.6693 (15) ÅT = 293 K
β = 93.014 (7)°Block, colourless
V = 941.87 (13) Å30.32 × 0.28 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini ultra)
diffractometer
1733 independent reflections
Radiation source: fine-focus sealed tube1255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.3592 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 56
Tmin = 0.966, Tmax = 0.984l = 2420
4220 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.0833P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1733 reflectionsΔρmax = 0.16 e Å3
140 parametersΔρmin = 0.15 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.106 (6)
Crystal data top
C6H7N3O·0.5C4H6O4V = 941.87 (13) Å3
Mr = 196.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6707 (8) ŵ = 0.11 mm1
b = 5.2628 (4) ÅT = 293 K
c = 20.6693 (15) Å0.32 × 0.28 × 0.15 mm
β = 93.014 (7)°
Data collection top
Oxford Diffraction Xcalibur (Atlas, Gemini ultra)
diffractometer
1733 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1255 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.984Rint = 0.029
4220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0394 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
1733 reflectionsΔρmin = 0.15 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39704 (16)0.7215 (3)0.47132 (6)0.0554 (4)
H10.352 (3)0.597 (3)0.4861 (11)0.083*
O20.19671 (16)0.3449 (3)0.50695 (6)0.0595 (4)
O30.11775 (15)0.3628 (3)0.40307 (6)0.0527 (4)
H3A0.182 (2)0.482 (3)0.4024 (11)0.079*
N10.36547 (19)1.1544 (3)0.27768 (7)0.0536 (5)
N20.4806 (2)1.0874 (3)0.39785 (8)0.0546 (5)
H2A0.497 (2)1.209 (3)0.3713 (8)0.066*
H2B0.517 (2)1.079 (4)0.4370 (6)0.066*
N30.32452 (17)0.7305 (3)0.40829 (6)0.0429 (4)
C10.3146 (3)1.1925 (4)0.21617 (10)0.0630 (6)
H1A0.35351.33060.19420.076*
C20.2086 (3)1.0397 (4)0.18374 (10)0.0623 (6)
H20.17721.07200.14080.075*
C30.1503 (3)0.8383 (4)0.21632 (10)0.0691 (7)
H30.07680.73220.19610.083*
C40.2017 (3)0.7947 (4)0.27915 (10)0.0589 (6)
H40.16390.65780.30200.071*
C50.30971 (19)0.9554 (3)0.30816 (8)0.0394 (4)
C60.37353 (19)0.9207 (3)0.37593 (8)0.0375 (4)
C70.1144 (2)0.2691 (3)0.46188 (8)0.0404 (4)
C80.0020 (2)0.0614 (3)0.46712 (8)0.0450 (5)
H8A0.01660.06750.43490.054*
H8B0.10430.13050.45750.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0678 (9)0.0588 (9)0.0376 (7)0.0209 (7)0.0147 (6)0.0097 (6)
O20.0687 (9)0.0703 (9)0.0387 (7)0.0310 (8)0.0055 (7)0.0058 (7)
O30.0573 (9)0.0596 (9)0.0402 (7)0.0211 (7)0.0069 (6)0.0095 (7)
N10.0545 (10)0.0596 (10)0.0466 (10)0.0103 (8)0.0023 (8)0.0131 (8)
N20.0664 (11)0.0567 (11)0.0400 (9)0.0249 (9)0.0048 (8)0.0050 (8)
N30.0482 (9)0.0450 (9)0.0347 (8)0.0081 (7)0.0070 (6)0.0036 (7)
C10.0607 (13)0.0774 (15)0.0508 (13)0.0053 (12)0.0014 (10)0.0252 (11)
C20.0659 (14)0.0788 (15)0.0410 (11)0.0078 (12)0.0075 (10)0.0142 (11)
C30.0829 (16)0.0678 (14)0.0534 (13)0.0107 (12)0.0279 (12)0.0085 (11)
C40.0737 (14)0.0512 (12)0.0496 (12)0.0162 (10)0.0176 (10)0.0112 (10)
C50.0412 (10)0.0391 (10)0.0378 (10)0.0007 (8)0.0011 (8)0.0016 (8)
C60.0390 (10)0.0371 (9)0.0365 (9)0.0042 (8)0.0016 (7)0.0013 (8)
C70.0411 (10)0.0433 (10)0.0370 (10)0.0000 (8)0.0024 (8)0.0003 (8)
C80.0432 (10)0.0467 (11)0.0448 (10)0.0094 (8)0.0002 (8)0.0020 (8)
Geometric parameters (Å, º) top
O1—N31.4173 (17)C1—H1A0.9300
O1—H10.828 (10)C2—C31.367 (3)
O2—C71.211 (2)C2—H20.9300
O3—C71.314 (2)C3—C41.370 (3)
O3—H3A0.840 (10)C3—H30.9300
N1—C51.327 (2)C4—C51.376 (3)
N1—C11.339 (2)C4—H40.9300
N2—C61.339 (2)C5—C61.490 (2)
N2—H2A0.859 (9)C7—C81.495 (2)
N2—H2B0.856 (9)C8—C8i1.503 (3)
N3—C61.288 (2)C8—H8A0.9700
C1—C21.370 (3)C8—H8B0.9700
N3—O1—H199.8 (16)C3—C4—H4120.3
C7—O3—H3A110.1 (16)C5—C4—H4120.3
C5—N1—C1117.31 (17)N1—C5—C4122.36 (16)
C6—N2—H2A114.0 (14)N1—C5—C6114.61 (15)
C6—N2—H2B120.2 (14)C4—C5—C6123.04 (16)
H2A—N2—H2B125 (2)N3—C6—N2125.12 (16)
C6—N3—O1111.14 (13)N3—C6—C5117.83 (14)
N1—C1—C2123.79 (19)N2—C6—C5117.03 (15)
N1—C1—H1A118.1O2—C7—O3123.17 (16)
C2—C1—H1A118.1O2—C7—C8123.90 (16)
C3—C2—C1118.03 (18)O3—C7—C8112.93 (15)
C3—C2—H2121.0C7—C8—C8i113.34 (18)
C1—C2—H2121.0C7—C8—H8A108.9
C2—C3—C4119.1 (2)C8i—C8—H8A108.9
C2—C3—H3120.4C7—C8—H8B108.9
C4—C3—H3120.4C8i—C8—H8B108.9
C3—C4—C5119.35 (19)H8A—C8—H8B107.7
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N30.84 (1)1.80 (1)2.6362 (18)175 (2)
O1—H1···O20.83 (1)1.96 (1)2.7608 (18)164 (2)
N2—H2B···O1ii0.86 (1)2.26 (1)3.025 (2)149 (2)
Symmetry code: (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC6H7N3O·0.5C4H6O4
Mr196.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.6707 (8), 5.2628 (4), 20.6693 (15)
β (°) 93.014 (7)
V3)941.87 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.28 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.966, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
4220, 1733, 1255
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.05
No. of reflections1733
No. of parameters140
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N30.840 (10)1.799 (10)2.6362 (18)175 (2)
O1—H1···O20.828 (10)1.955 (12)2.7608 (18)164 (2)
N2—H2B···O1i0.856 (9)2.257 (14)3.025 (2)149.2 (19)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This project was supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105) and the Education Department of Zhejiang Province.

References

First citationBiradha, K., Roy, S. & Mahata, G. (2009). Cryst. Growth Des. 9, 5006–5008.  Web of Science CrossRef Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311–2327.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (2003). J. Mol. Struct. 656, 5–15.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds