[Journal logo]

Volume 69 
Part 6 
Page o827  
June 2013  

Received 29 March 2013
Accepted 24 April 2013
Online 4 May 2013

Key indicators
Single-crystal X-ray study
T = 295 K
Mean [sigma](C-C) = 0.002 Å
R = 0.042
wR = 0.119
Data-to-parameter ratio = 15.1
Details
Open access

3-Nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1)

aDepartment of Physics, D.G. Vaishnav College, Chennai 600 106, India,bDepartment of Physics, Vel Tech Multi Tech Dr Rangarajan Dr Sakunthala Engineering College, Chennai 600 062, India,cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India,dInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wroclaw, 2, PO Box 937, Poland, and eDepartment of Physics, Presidency College, Chennai 600 005, India
Correspondence e-mail: chakkaravarthi_2005@yahoo.com, anbu_24663@yahoo.co.in

The asymmetric unit of the title compound, C3H6N6·2C6H5NO3, contains one melamine and two 3-nitrophenol molecules. The mean planes of the 3-nitrophenol molecules are almost orthogonal to the plane of melamine, making dihedral angles of 82.77 (4) and 88.36 (5)°. In the crystal, molecules are linked via O-H...N, N-H...N and N-H...O hydrogen bonds, forming a three-dimensional network. The crystal also features weak C-H...[pi] and [pi]-[pi] interactions [centroid-centroid distance = 3.9823 (9) Å].

Related literature

For general background to melamine derivatives, see: Desiraju et al. (1990[Desiraju, G. R. (1990). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Krische & Lehn (2000[Krische, M. J. & Lehn, J.-M. (2000). Struct. Bond. 96, 3-29.]). For related structures, see: Kanagathara et al. (2012[Kanagathara, N., Chakkaravarthi, G., Marchewka, M. K., Gunasekaran, S. & Anbalagan, G. (2012). Acta Cryst. E68, o2286.]); Wang et al. (2007[Wang, G., Wu, W. & Zhuang, L. (2007). Acta Cryst. E63, m2552-m2553.]).

[Scheme 1]

Experimental

Crystal data
  • C3H6N6·2C6H5NO3

  • Mr = 404.36

  • Orthorhombic, P b c a

  • a = 15.5150 (6) Å

  • b = 12.9137 (6) Å

  • c = 17.8323 (6) Å

  • V = 3572.8 (2) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 0.12 mm-1

  • T = 295 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.977

  • 19568 measured reflections

  • 4447 independent reflections

  • 3352 reflections with I > 2[sigma](I)

  • Rint = 0.028

Refinement
  • R[F2 > 2[sigma](F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.03

  • 4447 reflections

  • 295 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.24 e Å-3

  • [Delta][rho]min = -0.20 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the melamine triamine ring.

D-H...A D-H H...A D...A D-H...A
O1-H1...N3i 0.84 (1) 1.86 (1) 2.6907 (14) 176 (2)
O4-H4A...N2ii 0.83 (1) 1.87 (1) 2.6876 (14) 170 (2)
N5-H5A...N4iii 0.89 (1) 2.17 (1) 3.0594 (18) 178 (17)
N5-H5B...O1iv 0.87 (1) 2.25 (1) 2.9613 (16) 138 (15)
N7-H7A...O1v 0.88 (1) 2.32 (1) 3.1600 (17) 159 (14)
N7-H7B...O4vi 0.88 (1) 2.13 (1) 2.9180 (16) 149 (15)
C6-H6...Cg3vii 0.93 2.95 3.7504 (18) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (vii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2476 ).


Acknowledgements

The authors wish to acknowledge the SAIF, IIT Madras (India), for the data collection.

References

Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1990). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
Kanagathara, N., Chakkaravarthi, G., Marchewka, M. K., Gunasekaran, S. & Anbalagan, G. (2012). Acta Cryst. E68, o2286.  [CSD] [CrossRef] [details]
Krische, M. J. & Lehn, J.-M. (2000). Struct. Bond. 96, 3-29.  [CrossRef] [ChemPort]
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [ChemPort] [details]
Wang, G., Wu, W. & Zhuang, L. (2007). Acta Cryst. E63, m2552-m2553.  [CSD] [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o827  [ doi:10.1107/S1600536813011148 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.