supplementary materials


bq2386 scheme

Acta Cryst. (2013). E69, o976    [ doi:10.1107/S1600536813013743 ]

1,3,5-Tris(4-bromophenyl)-1,3,5-triazinane dichloromethane monosolvate

M. Chebbah, A. Bouchemma, S. Bouacida, L. Lefrada and M. Bouhenguel

Abstract top

In the main molecule of the title compound, C21H18Br3N3·CH2Cl2, the triazinane ring adopts a chair conformation with three 4-bromophenyl substituents, two in diaxial positions and the third in an equatorial arrangement (eaa). The torsion angles around the N-C bonds in the triazinane ring are in the range 55.6 (5)-60.1 (5)°. The structure can be described as being built up of alternating layers along the b axis with the CH2Cl2 solvent molecules sandwiched between these layers. No classical hydrogen-bonding interactions are observed in the crystal structure.

Comment top

A variety of chair, twist-boat and boat conformations can be considered for 1,3,5-triazacyclohexanes with a pyramidal arrangement of bonds at the N atoms. Four types of chair conformation. eee, eea, eaa, and aaa; where e is equatorial and a is axial, are possible and each of these conformations results in axial interactions involving substituents or lone pair of electrons on the N atoms. X-ray investigation of 1,3,5-triazacylohexane of 1,3,5-trialkyl and 1,3,5-triarylderivatives of 1,3,5-triazacyclohexane have consistently found the expected chair conformation with pyramidal arrangement of bonds at N atoms (Wellington & Tollens, 1885; Bouchemma et al., 1988; Adam et al., 1993; Gilardi et al., 2003). In the course of our studies in similar compounds we report here a conformation and crystal structure a new derivate of l,3,5-triazacylohexane, it is the product of a condensation reaction between 4-bromoaniline and formaldehyde. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The 1,3,5-tris(p-bromorophenyl)-l,3,5-triazacylohexane, adopts a chair conformation with two p-bromophenyl substituents situated in axial positions and a third in equatorial agreement (eaa). The structure can be described as alternating layers parallel to (010)planes, along the b axis and the dichloromethane solvent molecules are sandwiched between these layers (Fig.2). The packing of (I) is stabilized by a Van Der Waals interactions which form a three-dimensional network. No classical hydrogen bond was found.

Related literature top

For the conformations of 1,3,5-triaryl derivatives of 1,3,5-triazacyclohexane, see: Wellington & Tollens (1885); Bouchemma et al. (1988); Adam et al. (1993); Gilardi et al. (2003).

Experimental top

To a solution of p-bromoaniline (25 mmol) in ethanol (10 ml), was added formaldehyde (5 ml, 37% aqueous solution). Stirring was then maintained at 25°C for 12 h. The precipitate thus formed was then collected and washed with diethyl ether. The residue was crystallized from dichloromethane.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom, with C—H distances of 0.93 Å (Caromatic) and 0.97 Å (Cmethylene) and with Uiso(H) = 1.2 Ueq(Caromatic and Cmethylene).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atomic labeling scheme. Displacements are drawn at the 50% probability level.
[Figure 2] Fig. 2. A diagram of the layered crystal packing in (I), viewed down the a axis.
1,3,5-Tris(4-bromophenyl)-1,3,5-triazinane dichloromethane monosolvate top
Crystal data top
C21H18Br3N3·CH2Cl2Z = 2
Mr = 637.04F(000) = 624
Triclinic, P1Dx = 1.794 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0588 (2) ÅCell parameters from 13332 reflections
b = 14.3762 (6) Åθ = 1.5–28.5°
c = 15.1617 (6) ŵ = 5.37 mm1
α = 65.323 (3)°T = 295 K
β = 89.759 (2)°Prism, colourless
γ = 80.259 (2)°0.24 × 0.24 × 0.08 mm
V = 1179.46 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
3505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω + Phi scanθmax = 28.5°, θmin = 3.4°
Absorption correction: multi-scan
(Blessing, 1995)
h = 87
Tmin = 0.274, Tmax = 0.467k = 1819
13332 measured reflectionsl = 1719
5637 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0428P)2 + 1.5896P]
where P = (Fo2 + 2Fc2)/3
5637 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
C21H18Br3N3·CH2Cl2γ = 80.259 (2)°
Mr = 637.04V = 1179.46 (8) Å3
Triclinic, P1Z = 2
a = 6.0588 (2) ÅMo Kα radiation
b = 14.3762 (6) ŵ = 5.37 mm1
c = 15.1617 (6) ÅT = 295 K
α = 65.323 (3)°0.24 × 0.24 × 0.08 mm
β = 89.759 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5637 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3505 reflections with I > 2σ(I)
Tmin = 0.274, Tmax = 0.467Rint = 0.078
13332 measured reflectionsθmax = 28.5°
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.145Δρmax = 0.67 e Å3
S = 1.09Δρmin = 0.96 e Å3
5637 reflectionsAbsolute structure: ?
271 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18017 (11)1.56642 (5)0.60749 (5)0.0660 (2)
Br20.65521 (10)0.70178 (5)1.10267 (4)0.0635 (2)
Br30.63610 (10)0.74321 (5)0.60175 (5)0.05954 (19)
C10.4134 (9)1.4501 (4)0.6332 (4)0.0435 (12)
C20.6030 (10)1.4347 (4)0.6909 (4)0.0534 (14)
H20.6231.48340.71420.064*
C30.7646 (9)1.3449 (4)0.7140 (4)0.0472 (12)
H30.8941.33450.75220.057*
C40.7355 (8)1.2711 (4)0.6808 (3)0.0365 (10)
C50.5461 (8)1.2912 (4)0.6201 (4)0.0442 (12)
H50.52721.24370.59520.053*
C60.3851 (9)1.3797 (4)0.5958 (4)0.0482 (12)
H60.25931.3920.55490.058*
N70.8851 (7)1.1745 (3)0.7092 (3)0.0390 (9)
C81.0412 (9)1.1433 (4)0.7946 (4)0.0447 (12)
H8A1.15551.18650.77760.054*
H8B0.96031.15360.84610.054*
N91.1476 (7)1.0340 (3)0.8290 (3)0.0427 (10)
C101.2702 (8)1.0189 (4)0.7518 (4)0.0441 (12)
H10A1.33630.94580.77410.053*
H10B1.39131.05820.73720.053*
N111.1234 (7)1.0525 (3)0.6625 (3)0.0425 (10)
C121.0132 (9)1.1595 (4)0.6313 (4)0.0442 (12)
H12A0.91191.17970.57440.053*
H12B1.12471.20410.61310.053*
C131.0220 (8)0.9572 (4)0.8855 (3)0.0395 (11)
C140.8000 (8)0.9826 (4)0.9047 (4)0.0439 (12)
H140.72441.05130.87520.053*
C150.6918 (8)0.9057 (4)0.9678 (4)0.0471 (12)
H150.54430.92310.98080.057*
C160.7999 (8)0.8052 (4)1.0105 (4)0.0445 (12)
C171.0182 (9)0.7775 (4)0.9902 (4)0.0514 (13)
H171.09030.70821.01760.062*
C181.1266 (8)0.8542 (4)0.9287 (4)0.0481 (13)
H181.27410.83610.9160.058*
C191.0037 (8)0.9794 (4)0.6553 (3)0.0402 (11)
C201.1126 (9)0.8785 (4)0.6758 (4)0.0529 (14)
H201.26240.85790.69960.064*
C211.0056 (9)0.8089 (4)0.6619 (4)0.0548 (14)
H211.08190.74180.67670.066*
C220.7831 (8)0.8385 (4)0.6256 (4)0.0440 (12)
C230.6693 (9)0.9354 (4)0.6074 (4)0.0491 (13)
H230.51830.95410.58540.059*
C240.7774 (8)1.0066 (4)0.6214 (4)0.0447 (12)
H240.69841.07290.60810.054*
Cl110.4359 (4)0.6198 (3)0.8705 (2)0.1647 (16)
Cl120.8927 (4)0.5297 (2)0.86456 (17)0.1056 (7)
C1010.7167 (16)0.6197 (8)0.8929 (7)0.118 (3)
H10C0.7490.68860.85450.142*
H10D0.74540.60370.96110.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0620 (4)0.0496 (4)0.0824 (5)0.0053 (3)0.0044 (3)0.0299 (3)
Br20.0582 (4)0.0680 (4)0.0602 (4)0.0218 (3)0.0080 (3)0.0194 (3)
Br30.0568 (4)0.0626 (4)0.0712 (4)0.0116 (3)0.0024 (3)0.0396 (3)
C10.045 (3)0.035 (3)0.049 (3)0.006 (2)0.011 (2)0.018 (2)
C20.060 (4)0.042 (3)0.064 (4)0.011 (3)0.001 (3)0.028 (3)
C30.045 (3)0.039 (3)0.058 (3)0.011 (2)0.002 (2)0.020 (2)
C40.038 (2)0.032 (2)0.039 (3)0.010 (2)0.0048 (19)0.014 (2)
C50.045 (3)0.044 (3)0.050 (3)0.008 (2)0.002 (2)0.026 (2)
C60.043 (3)0.048 (3)0.054 (3)0.009 (2)0.004 (2)0.022 (3)
N70.041 (2)0.039 (2)0.042 (2)0.0051 (18)0.0024 (17)0.0227 (18)
C80.045 (3)0.044 (3)0.046 (3)0.007 (2)0.005 (2)0.021 (2)
N90.035 (2)0.048 (3)0.045 (2)0.0025 (19)0.0031 (17)0.0218 (19)
C100.030 (2)0.051 (3)0.054 (3)0.009 (2)0.005 (2)0.024 (2)
N110.037 (2)0.047 (3)0.045 (2)0.0044 (19)0.0068 (17)0.023 (2)
C120.042 (3)0.044 (3)0.047 (3)0.011 (2)0.011 (2)0.018 (2)
C130.032 (2)0.048 (3)0.039 (3)0.005 (2)0.0040 (19)0.019 (2)
C140.035 (3)0.049 (3)0.049 (3)0.001 (2)0.002 (2)0.024 (2)
C150.035 (3)0.057 (3)0.052 (3)0.004 (2)0.001 (2)0.027 (3)
C160.041 (3)0.053 (3)0.043 (3)0.012 (2)0.001 (2)0.022 (2)
C170.044 (3)0.048 (3)0.055 (3)0.003 (2)0.000 (2)0.017 (3)
C180.030 (3)0.048 (3)0.059 (3)0.003 (2)0.001 (2)0.019 (3)
C190.037 (3)0.044 (3)0.039 (3)0.004 (2)0.007 (2)0.018 (2)
C200.038 (3)0.052 (3)0.070 (4)0.001 (2)0.004 (2)0.030 (3)
C210.044 (3)0.044 (3)0.075 (4)0.007 (2)0.005 (3)0.029 (3)
C220.045 (3)0.048 (3)0.043 (3)0.008 (2)0.000 (2)0.022 (2)
C230.040 (3)0.051 (3)0.053 (3)0.003 (2)0.006 (2)0.020 (3)
C240.036 (3)0.042 (3)0.053 (3)0.004 (2)0.002 (2)0.020 (2)
Cl110.0865 (17)0.237 (4)0.112 (2)0.038 (2)0.0031 (14)0.043 (2)
Cl120.0865 (14)0.1185 (18)0.1040 (16)0.0149 (13)0.0080 (11)0.0519 (13)
C1010.115 (8)0.137 (8)0.117 (7)0.001 (6)0.005 (6)0.076 (7)
Geometric parameters (Å, º) top
Br1—C11.899 (5)C12—H12A0.97
Br2—C161.904 (5)C12—H12B0.97
Br3—C221.905 (5)C13—C181.378 (7)
C1—C21.376 (8)C13—C141.395 (7)
C1—C61.383 (7)C14—C151.388 (7)
C2—C31.394 (7)C14—H140.93
C2—H20.93C15—C161.355 (7)
C3—C41.386 (7)C15—H150.93
C3—H30.93C16—C171.387 (7)
C4—C51.386 (7)C17—C181.378 (7)
C4—N71.419 (6)C17—H170.93
C5—C61.377 (7)C18—H180.93
C5—H50.93C19—C201.392 (7)
C6—H60.93C19—C241.398 (7)
N7—C81.468 (6)C20—C211.364 (8)
N7—C121.480 (6)C20—H200.93
C8—N91.460 (6)C21—C221.385 (7)
C8—H8A0.97C21—H210.93
C8—H8B0.97C22—C231.359 (7)
N9—C131.422 (6)C23—C241.390 (7)
N9—C101.456 (6)C23—H230.93
C10—N111.475 (6)C24—H240.93
C10—H10A0.97Cl11—C1011.736 (10)
C10—H10B0.97Cl12—C1011.729 (9)
N11—C191.413 (7)C101—H10C0.97
N11—C121.444 (6)C101—H10D0.97
C2—C1—C6120.9 (5)H12A—C12—H12B108
C2—C1—Br1120.3 (4)C18—C13—C14118.3 (5)
C6—C1—Br1118.8 (4)C18—C13—N9119.2 (4)
C1—C2—C3119.1 (5)C14—C13—N9122.4 (4)
C1—C2—H2120.5C15—C14—C13120.1 (5)
C3—C2—H2120.5C15—C14—H14119.9
C4—C3—C2121.1 (5)C13—C14—H14119.9
C4—C3—H3119.5C16—C15—C14120.4 (5)
C2—C3—H3119.5C16—C15—H15119.8
C3—C4—C5118.1 (5)C14—C15—H15119.8
C3—C4—N7123.2 (4)C15—C16—C17120.5 (5)
C5—C4—N7118.7 (4)C15—C16—Br2119.9 (4)
C6—C5—C4121.8 (5)C17—C16—Br2119.6 (4)
C6—C5—H5119.1C18—C17—C16119.0 (5)
C4—C5—H5119.1C18—C17—H17120.5
C5—C6—C1119.0 (5)C16—C17—H17120.5
C5—C6—H6120.5C13—C18—C17121.6 (5)
C1—C6—H6120.5C13—C18—H18119.2
C4—N7—C8116.2 (4)C17—C18—H18119.2
C4—N7—C12116.0 (4)C20—C19—C24117.3 (5)
C8—N7—C12108.5 (4)C20—C19—N11120.6 (4)
N9—C8—N7110.4 (4)C24—C19—N11122.0 (5)
N9—C8—H8A109.6C21—C20—C19121.8 (5)
N7—C8—H8A109.6C21—C20—H20119.1
N9—C8—H8B109.6C19—C20—H20119.1
N7—C8—H8B109.6C20—C21—C22119.9 (5)
H8A—C8—H8B108.1C20—C21—H21120.1
C13—N9—C10117.9 (4)C22—C21—H21120.1
C13—N9—C8117.9 (4)C23—C22—C21120.0 (5)
C10—N9—C8109.5 (4)C23—C22—Br3120.0 (4)
N9—C10—N11111.8 (4)C21—C22—Br3120.0 (4)
N9—C10—H10A109.2C22—C23—C24120.4 (5)
N11—C10—H10A109.2C22—C23—H23119.8
N9—C10—H10B109.3C24—C23—H23119.8
N11—C10—H10B109.3C23—C24—C19120.6 (5)
H10A—C10—H10B107.9C23—C24—H24119.7
C19—N11—C12119.7 (4)C19—C24—H24119.7
C19—N11—C10117.5 (4)Cl12—C101—Cl11111.7 (6)
C12—N11—C10110.1 (4)Cl12—C101—H10C109.3
N11—C12—N7111.3 (4)Cl11—C101—H10C109.3
N11—C12—H12A109.4Cl12—C101—H10D109.3
N7—C12—H12A109.4Cl11—C101—H10D109.3
N11—C12—H12B109.4H10C—C101—H10D107.9
N7—C12—H12B109.4
C6—C1—C2—C31.9 (8)C18—C13—C14—C151.6 (7)
Br1—C1—C2—C3175.7 (4)N9—C13—C14—C15173.9 (5)
C1—C2—C3—C40.8 (8)C13—C14—C15—C160.6 (8)
C2—C3—C4—C53.0 (8)C14—C15—C16—C171.4 (8)
C2—C3—C4—N7174.3 (5)C14—C15—C16—Br2176.3 (4)
C3—C4—C5—C62.5 (8)C15—C16—C17—C182.4 (8)
N7—C4—C5—C6174.9 (5)Br2—C16—C17—C18175.4 (4)
C4—C5—C6—C10.1 (8)C14—C13—C18—C170.6 (8)
C2—C1—C6—C52.4 (8)N9—C13—C18—C17175.0 (5)
Br1—C1—C6—C5175.2 (4)C16—C17—C18—C131.3 (9)
C3—C4—N7—C815.3 (7)C12—N11—C19—C20173.6 (4)
C5—C4—N7—C8162.0 (4)C10—N11—C19—C2048.4 (6)
C3—C4—N7—C12114.0 (5)C12—N11—C19—C242.1 (7)
C5—C4—N7—C1268.7 (6)C10—N11—C19—C24135.9 (5)
C4—N7—C8—N9167.0 (4)C24—C19—C20—C211.2 (8)
C12—N7—C8—N960.1 (5)N11—C19—C20—C21174.6 (5)
N7—C8—N9—C1378.9 (5)C19—C20—C21—C220.6 (9)
C13—N9—C10—N1181.6 (5)C20—C21—C22—C232.5 (9)
C8—N9—C10—N1156.9 (5)C20—C21—C22—Br3177.8 (4)
N9—C10—N11—C1986.2 (5)C21—C22—C23—C242.5 (8)
C19—N11—C12—N784.4 (5)Br3—C22—C23—C24177.8 (4)
C10—N11—C12—N756.4 (5)C22—C23—C24—C190.6 (8)
C4—N7—C12—N11168.1 (4)C20—C19—C24—C231.2 (7)
C10—N9—C13—C1852.7 (6)N11—C19—C24—C23174.6 (4)
C8—N9—C13—C18172.3 (4)N7—C8—N9—C1059.6 (5)
C10—N9—C13—C14131.9 (5)C8—N7—C12—N1158.9 (5)
C8—N9—C13—C143.1 (7)N9—C10—N11—C1255.6 (5)
Acknowledgements top

This work was supported by the LCATM laboratory, Université Oum El Bouaghi, Algeria. Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie - Algérie) for financial support via the PNR programme.

references
References top

Adam, D., McCabe, P. H., Sim, G. A. & Bouchemma, A. (1993). Acta Cryst. C49, 837–841.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Bouchemma, A., McCabe, P. H. & Sim, G. A. (1988). Acta Cryst. C44, 1469–1472.

Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Gilardi, R., Evans, R. N. & Duddu, R. (2003). Acta Cryst. E59, o1187–o1188.

Nonius (200). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wellington, C. & Tollens, T. (1885). Chem. Ber. 18, 3298–3311.