organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5-Tris(4-bromo­phen­yl)-1,3,5-triazin­ane di­chloro­methane monosolvate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Oum El Bouaghi, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and cUnité de Recherche de Cimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Constantine 25000, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 9 May 2013; accepted 17 May 2013; online 25 May 2013)

In the main mol­ecule of the title compound, C21H18Br3N3·CH2Cl2, the triazinane ring adopts a chair conformation with three 4-brom­ophenyl substituents, two in diaxial positions and the third in an equatorial arrangement (eaa). The torsion angles around the N—C bonds in the triazinane ring are in the range 55.6 (5)–60.1 (5)°. The structure can be described as being built up of alternating layers along the b axis with the CH2Cl2 solvent mol­ecules sandwiched between these layers. No classical hydrogen-bonding inter­actions are observed in the crystal structure.

Related literature

For the conformations of 1,3,5-triaryl derivatives of 1,3,5-tri­aza­cyclo­hexane, see: Wellington & Tollens (1885[Wellington, C. & Tollens, T. (1885). Chem. Ber. 18, 3298-3311.]); Bouchemma et al. (1988[Bouchemma, A., McCabe, P. H. & Sim, G. A. (1988). Acta Cryst. C44, 1469-1472.]); Adam et al. (1993[Adam, D., McCabe, P. H., Sim, G. A. & Bouchemma, A. (1993). Acta Cryst. C49, 837-841.]); Gilardi et al. (2003[Gilardi, R., Evans, R. N. & Duddu, R. (2003). Acta Cryst. E59, o1187-o1188.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18Br3N3·CH2Cl2

  • Mr = 637.04

  • Triclinic, [P \overline 1]

  • a = 6.0588 (2) Å

  • b = 14.3762 (6) Å

  • c = 15.1617 (6) Å

  • α = 65.323 (3)°

  • β = 89.759 (2)°

  • γ = 80.259 (2)°

  • V = 1179.46 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.37 mm−1

  • T = 295 K

  • 0.24 × 0.24 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.274, Tmax = 0.467

  • 13332 measured reflections

  • 5637 independent reflections

  • 3505 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.145

  • S = 1.09

  • 5637 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.96 e Å−3

Data collection: COLLECT (Nonius, 2000)[Nonius (200). COLLECT. Nonius BV, Delft, The Netherlands.]; cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

A variety of chair, twist-boat and boat conformations can be considered for 1,3,5-triazacyclohexanes with a pyramidal arrangement of bonds at the N atoms. Four types of chair conformation. eee, eea, eaa, and aaa; where e is equatorial and a is axial, are possible and each of these conformations results in axial interactions involving substituents or lone pair of electrons on the N atoms. X-ray investigation of 1,3,5-triazacylohexane of 1,3,5-trialkyl and 1,3,5-triarylderivatives of 1,3,5-triazacyclohexane have consistently found the expected chair conformation with pyramidal arrangement of bonds at N atoms (Wellington & Tollens, 1885; Bouchemma et al., 1988; Adam et al., 1993; Gilardi et al., 2003). In the course of our studies in similar compounds we report here a conformation and crystal structure a new derivate of l,3,5-triazacylohexane, it is the product of a condensation reaction between 4-bromoaniline and formaldehyde. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The 1,3,5-tris(p-bromorophenyl)-l,3,5-triazacylohexane, adopts a chair conformation with two p-bromophenyl substituents situated in axial positions and a third in equatorial agreement (eaa). The structure can be described as alternating layers parallel to (010)planes, along the b axis and the dichloromethane solvent molecules are sandwiched between these layers (Fig.2). The packing of (I) is stabilized by a Van Der Waals interactions which form a three-dimensional network. No classical hydrogen bond was found.

Related literature top

For the conformations of 1,3,5-triaryl derivatives of 1,3,5-triazacyclohexane, see: Wellington & Tollens (1885); Bouchemma et al. (1988); Adam et al. (1993); Gilardi et al. (2003).

Experimental top

To a solution of p-bromoaniline (25 mmol) in ethanol (10 ml), was added formaldehyde (5 ml, 37% aqueous solution). Stirring was then maintained at 25°C for 12 h. The precipitate thus formed was then collected and washed with diethyl ether. The residue was crystallized from dichloromethane.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent C atom, with C—H distances of 0.93 Å (Caromatic) and 0.97 Å (Cmethylene) and with Uiso(H) = 1.2 Ueq(Caromatic and Cmethylene).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atomic labeling scheme. Displacements are drawn at the 50% probability level.
[Figure 2] Fig. 2. A diagram of the layered crystal packing in (I), viewed down the a axis.
1,3,5-Tris(4-bromophenyl)-1,3,5-triazinane dichloromethane monosolvate top
Crystal data top
C21H18Br3N3·CH2Cl2Z = 2
Mr = 637.04F(000) = 624
Triclinic, P1Dx = 1.794 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0588 (2) ÅCell parameters from 13332 reflections
b = 14.3762 (6) Åθ = 1.5–28.5°
c = 15.1617 (6) ŵ = 5.37 mm1
α = 65.323 (3)°T = 295 K
β = 89.759 (2)°Prism, colourless
γ = 80.259 (2)°0.24 × 0.24 × 0.08 mm
V = 1179.46 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
3505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω + Phi scanθmax = 28.5°, θmin = 3.4°
Absorption correction: multi-scan
(Blessing, 1995)
h = 87
Tmin = 0.274, Tmax = 0.467k = 1819
13332 measured reflectionsl = 1719
5637 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0428P)2 + 1.5896P]
where P = (Fo2 + 2Fc2)/3
5637 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
C21H18Br3N3·CH2Cl2γ = 80.259 (2)°
Mr = 637.04V = 1179.46 (8) Å3
Triclinic, P1Z = 2
a = 6.0588 (2) ÅMo Kα radiation
b = 14.3762 (6) ŵ = 5.37 mm1
c = 15.1617 (6) ÅT = 295 K
α = 65.323 (3)°0.24 × 0.24 × 0.08 mm
β = 89.759 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5637 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3505 reflections with I > 2σ(I)
Tmin = 0.274, Tmax = 0.467Rint = 0.078
13332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.09Δρmax = 0.67 e Å3
5637 reflectionsΔρmin = 0.96 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18017 (11)1.56642 (5)0.60749 (5)0.0660 (2)
Br20.65521 (10)0.70178 (5)1.10267 (4)0.0635 (2)
Br30.63610 (10)0.74321 (5)0.60175 (5)0.05954 (19)
C10.4134 (9)1.4501 (4)0.6332 (4)0.0435 (12)
C20.6030 (10)1.4347 (4)0.6909 (4)0.0534 (14)
H20.6231.48340.71420.064*
C30.7646 (9)1.3449 (4)0.7140 (4)0.0472 (12)
H30.8941.33450.75220.057*
C40.7355 (8)1.2711 (4)0.6808 (3)0.0365 (10)
C50.5461 (8)1.2912 (4)0.6201 (4)0.0442 (12)
H50.52721.24370.59520.053*
C60.3851 (9)1.3797 (4)0.5958 (4)0.0482 (12)
H60.25931.3920.55490.058*
N70.8851 (7)1.1745 (3)0.7092 (3)0.0390 (9)
C81.0412 (9)1.1433 (4)0.7946 (4)0.0447 (12)
H8A1.15551.18650.77760.054*
H8B0.96031.15360.84610.054*
N91.1476 (7)1.0340 (3)0.8290 (3)0.0427 (10)
C101.2702 (8)1.0189 (4)0.7518 (4)0.0441 (12)
H10A1.33630.94580.77410.053*
H10B1.39131.05820.73720.053*
N111.1234 (7)1.0525 (3)0.6625 (3)0.0425 (10)
C121.0132 (9)1.1595 (4)0.6313 (4)0.0442 (12)
H12A0.91191.17970.57440.053*
H12B1.12471.20410.61310.053*
C131.0220 (8)0.9572 (4)0.8855 (3)0.0395 (11)
C140.8000 (8)0.9826 (4)0.9047 (4)0.0439 (12)
H140.72441.05130.87520.053*
C150.6918 (8)0.9057 (4)0.9678 (4)0.0471 (12)
H150.54430.92310.98080.057*
C160.7999 (8)0.8052 (4)1.0105 (4)0.0445 (12)
C171.0182 (9)0.7775 (4)0.9902 (4)0.0514 (13)
H171.09030.70821.01760.062*
C181.1266 (8)0.8542 (4)0.9287 (4)0.0481 (13)
H181.27410.83610.9160.058*
C191.0037 (8)0.9794 (4)0.6553 (3)0.0402 (11)
C201.1126 (9)0.8785 (4)0.6758 (4)0.0529 (14)
H201.26240.85790.69960.064*
C211.0056 (9)0.8089 (4)0.6619 (4)0.0548 (14)
H211.08190.74180.67670.066*
C220.7831 (8)0.8385 (4)0.6256 (4)0.0440 (12)
C230.6693 (9)0.9354 (4)0.6074 (4)0.0491 (13)
H230.51830.95410.58540.059*
C240.7774 (8)1.0066 (4)0.6214 (4)0.0447 (12)
H240.69841.07290.60810.054*
Cl110.4359 (4)0.6198 (3)0.8705 (2)0.1647 (16)
Cl120.8927 (4)0.5297 (2)0.86456 (17)0.1056 (7)
C1010.7167 (16)0.6197 (8)0.8929 (7)0.118 (3)
H10C0.7490.68860.85450.142*
H10D0.74540.60370.96110.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0620 (4)0.0496 (4)0.0824 (5)0.0053 (3)0.0044 (3)0.0299 (3)
Br20.0582 (4)0.0680 (4)0.0602 (4)0.0218 (3)0.0080 (3)0.0194 (3)
Br30.0568 (4)0.0626 (4)0.0712 (4)0.0116 (3)0.0024 (3)0.0396 (3)
C10.045 (3)0.035 (3)0.049 (3)0.006 (2)0.011 (2)0.018 (2)
C20.060 (4)0.042 (3)0.064 (4)0.011 (3)0.001 (3)0.028 (3)
C30.045 (3)0.039 (3)0.058 (3)0.011 (2)0.002 (2)0.020 (2)
C40.038 (2)0.032 (2)0.039 (3)0.010 (2)0.0048 (19)0.014 (2)
C50.045 (3)0.044 (3)0.050 (3)0.008 (2)0.002 (2)0.026 (2)
C60.043 (3)0.048 (3)0.054 (3)0.009 (2)0.004 (2)0.022 (3)
N70.041 (2)0.039 (2)0.042 (2)0.0051 (18)0.0024 (17)0.0227 (18)
C80.045 (3)0.044 (3)0.046 (3)0.007 (2)0.005 (2)0.021 (2)
N90.035 (2)0.048 (3)0.045 (2)0.0025 (19)0.0031 (17)0.0218 (19)
C100.030 (2)0.051 (3)0.054 (3)0.009 (2)0.005 (2)0.024 (2)
N110.037 (2)0.047 (3)0.045 (2)0.0044 (19)0.0068 (17)0.023 (2)
C120.042 (3)0.044 (3)0.047 (3)0.011 (2)0.011 (2)0.018 (2)
C130.032 (2)0.048 (3)0.039 (3)0.005 (2)0.0040 (19)0.019 (2)
C140.035 (3)0.049 (3)0.049 (3)0.001 (2)0.002 (2)0.024 (2)
C150.035 (3)0.057 (3)0.052 (3)0.004 (2)0.001 (2)0.027 (3)
C160.041 (3)0.053 (3)0.043 (3)0.012 (2)0.001 (2)0.022 (2)
C170.044 (3)0.048 (3)0.055 (3)0.003 (2)0.000 (2)0.017 (3)
C180.030 (3)0.048 (3)0.059 (3)0.003 (2)0.001 (2)0.019 (3)
C190.037 (3)0.044 (3)0.039 (3)0.004 (2)0.007 (2)0.018 (2)
C200.038 (3)0.052 (3)0.070 (4)0.001 (2)0.004 (2)0.030 (3)
C210.044 (3)0.044 (3)0.075 (4)0.007 (2)0.005 (3)0.029 (3)
C220.045 (3)0.048 (3)0.043 (3)0.008 (2)0.000 (2)0.022 (2)
C230.040 (3)0.051 (3)0.053 (3)0.003 (2)0.006 (2)0.020 (3)
C240.036 (3)0.042 (3)0.053 (3)0.004 (2)0.002 (2)0.020 (2)
Cl110.0865 (17)0.237 (4)0.112 (2)0.038 (2)0.0031 (14)0.043 (2)
Cl120.0865 (14)0.1185 (18)0.1040 (16)0.0149 (13)0.0080 (11)0.0519 (13)
C1010.115 (8)0.137 (8)0.117 (7)0.001 (6)0.005 (6)0.076 (7)
Geometric parameters (Å, º) top
Br1—C11.899 (5)C12—H12A0.97
Br2—C161.904 (5)C12—H12B0.97
Br3—C221.905 (5)C13—C181.378 (7)
C1—C21.376 (8)C13—C141.395 (7)
C1—C61.383 (7)C14—C151.388 (7)
C2—C31.394 (7)C14—H140.93
C2—H20.93C15—C161.355 (7)
C3—C41.386 (7)C15—H150.93
C3—H30.93C16—C171.387 (7)
C4—C51.386 (7)C17—C181.378 (7)
C4—N71.419 (6)C17—H170.93
C5—C61.377 (7)C18—H180.93
C5—H50.93C19—C201.392 (7)
C6—H60.93C19—C241.398 (7)
N7—C81.468 (6)C20—C211.364 (8)
N7—C121.480 (6)C20—H200.93
C8—N91.460 (6)C21—C221.385 (7)
C8—H8A0.97C21—H210.93
C8—H8B0.97C22—C231.359 (7)
N9—C131.422 (6)C23—C241.390 (7)
N9—C101.456 (6)C23—H230.93
C10—N111.475 (6)C24—H240.93
C10—H10A0.97Cl11—C1011.736 (10)
C10—H10B0.97Cl12—C1011.729 (9)
N11—C191.413 (7)C101—H10C0.97
N11—C121.444 (6)C101—H10D0.97
C2—C1—C6120.9 (5)H12A—C12—H12B108
C2—C1—Br1120.3 (4)C18—C13—C14118.3 (5)
C6—C1—Br1118.8 (4)C18—C13—N9119.2 (4)
C1—C2—C3119.1 (5)C14—C13—N9122.4 (4)
C1—C2—H2120.5C15—C14—C13120.1 (5)
C3—C2—H2120.5C15—C14—H14119.9
C4—C3—C2121.1 (5)C13—C14—H14119.9
C4—C3—H3119.5C16—C15—C14120.4 (5)
C2—C3—H3119.5C16—C15—H15119.8
C3—C4—C5118.1 (5)C14—C15—H15119.8
C3—C4—N7123.2 (4)C15—C16—C17120.5 (5)
C5—C4—N7118.7 (4)C15—C16—Br2119.9 (4)
C6—C5—C4121.8 (5)C17—C16—Br2119.6 (4)
C6—C5—H5119.1C18—C17—C16119.0 (5)
C4—C5—H5119.1C18—C17—H17120.5
C5—C6—C1119.0 (5)C16—C17—H17120.5
C5—C6—H6120.5C13—C18—C17121.6 (5)
C1—C6—H6120.5C13—C18—H18119.2
C4—N7—C8116.2 (4)C17—C18—H18119.2
C4—N7—C12116.0 (4)C20—C19—C24117.3 (5)
C8—N7—C12108.5 (4)C20—C19—N11120.6 (4)
N9—C8—N7110.4 (4)C24—C19—N11122.0 (5)
N9—C8—H8A109.6C21—C20—C19121.8 (5)
N7—C8—H8A109.6C21—C20—H20119.1
N9—C8—H8B109.6C19—C20—H20119.1
N7—C8—H8B109.6C20—C21—C22119.9 (5)
H8A—C8—H8B108.1C20—C21—H21120.1
C13—N9—C10117.9 (4)C22—C21—H21120.1
C13—N9—C8117.9 (4)C23—C22—C21120.0 (5)
C10—N9—C8109.5 (4)C23—C22—Br3120.0 (4)
N9—C10—N11111.8 (4)C21—C22—Br3120.0 (4)
N9—C10—H10A109.2C22—C23—C24120.4 (5)
N11—C10—H10A109.2C22—C23—H23119.8
N9—C10—H10B109.3C24—C23—H23119.8
N11—C10—H10B109.3C23—C24—C19120.6 (5)
H10A—C10—H10B107.9C23—C24—H24119.7
C19—N11—C12119.7 (4)C19—C24—H24119.7
C19—N11—C10117.5 (4)Cl12—C101—Cl11111.7 (6)
C12—N11—C10110.1 (4)Cl12—C101—H10C109.3
N11—C12—N7111.3 (4)Cl11—C101—H10C109.3
N11—C12—H12A109.4Cl12—C101—H10D109.3
N7—C12—H12A109.4Cl11—C101—H10D109.3
N11—C12—H12B109.4H10C—C101—H10D107.9
N7—C12—H12B109.4
C6—C1—C2—C31.9 (8)C18—C13—C14—C151.6 (7)
Br1—C1—C2—C3175.7 (4)N9—C13—C14—C15173.9 (5)
C1—C2—C3—C40.8 (8)C13—C14—C15—C160.6 (8)
C2—C3—C4—C53.0 (8)C14—C15—C16—C171.4 (8)
C2—C3—C4—N7174.3 (5)C14—C15—C16—Br2176.3 (4)
C3—C4—C5—C62.5 (8)C15—C16—C17—C182.4 (8)
N7—C4—C5—C6174.9 (5)Br2—C16—C17—C18175.4 (4)
C4—C5—C6—C10.1 (8)C14—C13—C18—C170.6 (8)
C2—C1—C6—C52.4 (8)N9—C13—C18—C17175.0 (5)
Br1—C1—C6—C5175.2 (4)C16—C17—C18—C131.3 (9)
C3—C4—N7—C815.3 (7)C12—N11—C19—C20173.6 (4)
C5—C4—N7—C8162.0 (4)C10—N11—C19—C2048.4 (6)
C3—C4—N7—C12114.0 (5)C12—N11—C19—C242.1 (7)
C5—C4—N7—C1268.7 (6)C10—N11—C19—C24135.9 (5)
C4—N7—C8—N9167.0 (4)C24—C19—C20—C211.2 (8)
C12—N7—C8—N960.1 (5)N11—C19—C20—C21174.6 (5)
N7—C8—N9—C1378.9 (5)C19—C20—C21—C220.6 (9)
C13—N9—C10—N1181.6 (5)C20—C21—C22—C232.5 (9)
C8—N9—C10—N1156.9 (5)C20—C21—C22—Br3177.8 (4)
N9—C10—N11—C1986.2 (5)C21—C22—C23—C242.5 (8)
C19—N11—C12—N784.4 (5)Br3—C22—C23—C24177.8 (4)
C10—N11—C12—N756.4 (5)C22—C23—C24—C190.6 (8)
C4—N7—C12—N11168.1 (4)C20—C19—C24—C231.2 (7)
C10—N9—C13—C1852.7 (6)N11—C19—C24—C23174.6 (4)
C8—N9—C13—C18172.3 (4)N7—C8—N9—C1059.6 (5)
C10—N9—C13—C14131.9 (5)C8—N7—C12—N1158.9 (5)
C8—N9—C13—C143.1 (7)N9—C10—N11—C1255.6 (5)

Experimental details

Crystal data
Chemical formulaC21H18Br3N3·CH2Cl2
Mr637.04
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.0588 (2), 14.3762 (6), 15.1617 (6)
α, β, γ (°)65.323 (3), 89.759 (2), 80.259 (2)
V3)1179.46 (8)
Z2
Radiation typeMo Kα
µ (mm1)5.37
Crystal size (mm)0.24 × 0.24 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.274, 0.467
No. of measured, independent and
observed [I > 2σ(I)] reflections
13332, 5637, 3505
Rint0.078
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.145, 1.09
No. of reflections5637
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.96

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).

 

Acknowledgements

This work was supported by the LCATM laboratory, Université Oum El Bouaghi, Algeria. Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie - Algérie) for financial support via the PNR programme.

References

First citationAdam, D., McCabe, P. H., Sim, G. A. & Bouchemma, A. (1993). Acta Cryst. C49, 837–841.  CSD CrossRef CAS Web of Science IUCr Journals
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals
First citationBouchemma, A., McCabe, P. H. & Sim, G. A. (1988). Acta Cryst. C44, 1469–1472.  CSD CrossRef CAS Web of Science IUCr Journals
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGilardi, R., Evans, R. N. & Duddu, R. (2003). Acta Cryst. E59, o1187–o1188.  Web of Science CSD CrossRef CAS IUCr Journals
First citationNonius (200). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWellington, C. & Tollens, T. (1885). Chem. Ber. 18, 3298–3311.  CrossRef

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds