supplementary materials


bt6902 scheme

Acta Cryst. (2013). E69, o898    [ doi:10.1107/S1600536813012798 ]

8,11,24-Trioxa-21-thia-19-azapentacyclo[16.6.0.02,7.012,17.019,23]tetracosa-2(7),3,5,12,14,16-hexaene

S. K. Devi, T. Srinivasan, S. Purushothaman, R. Raghunathan and D. Velmurugan

Abstract top

In the title compound, C19H19NO3S, the thiazole and oxazolidine rings each adopt an envelope conformation, with the S and O atoms as the respective flap atoms. The thiazole and oxazolidine rings (all atoms) make a dihedral angle of 66.39 (11)° while the phenyl rings subtend a dihedral angle of 22.71 (10)°.

Comment top

Thiazole derivatives have a varity of physiological effects, such as antiinflammatory (Guo et al., 2006) and antimicrobial (Karegoudar et al., 2008). Against this background, we report herein the crystal structure of the title compound.

In the title compound, C19H19NO3S, (Fig. 1) both the thiazole ring and the oxazolidine ring adopt an envelope conformation. The thiazole ring (S1/N1/C17/C18/C19) makes a dihedral angle of 66.39 (11)° with the oxazolidine ring (O3/N1/C7/C8/C17). The thiazole ring makes a dihedral angle of 61.25 (11)° with the phenyl ring (C1-C6), it makes a dihedral angle of 79.60 (11)° with the other phenyl ring (C9-C14).

The oxazolidine ring makes a dihedral angle of 64.80 (11)° with the phenyl ring (C1-C6), it makes a dihedral angle of 67.26 (10)° with the other phenyl ring (C9-C14). The dihedral angle between the two phenyl rings is 22.71 (10)°. The molecular structure features weak intramolecular C–H···O and C–H···N hydrogen bonds (Table 1).

Related literature top

For the biological activity of thiazole derivatives, see: Guo et al. (2006); Karegoudar et al. (2008); Reddy et al. (1999).

Experimental top

A mixture of 2,2'-(ethane-1,2-diylbis(oxy))dibenzaldehyde (1 mMol) and thiazolidine-4-carboxylic acid (1 mMol) was refluxed in acetonitrile (30ml) for about 5 hrs under N2 atm. After the completion of reaction as indicated by TLC, acetonitrile was evaporated under reduced pressure. The crude product was purified by column chromatography using hexane: EtOAc (8:2) mixture as eluent. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

The hydrogen atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 Å to 0.98 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
8,11,24-Trioxa-21-thia-19-azapentacyclo[16.6.0.02,7.012,17.019,23]tetracosa-2(7),3,5,12,14,16-hexaene top
Crystal data top
C19H19NO3SF(000) = 720
Mr = 341.42Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4067 reflections
a = 10.725 (5) Åθ = 1.9–28.4°
b = 10.405 (5) ŵ = 0.22 mm1
c = 14.930 (5) ÅT = 293 K
β = 100.262 (5)°Block, colourless
V = 1639.4 (12) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4067 independent reflections
Radiation source: fine-focus sealed tube2586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.938, Tmax = 0.958k = 1313
15331 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.3653P]
where P = (Fo2 + 2Fc2)/3
4067 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C19H19NO3SV = 1639.4 (12) Å3
Mr = 341.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.725 (5) ŵ = 0.22 mm1
b = 10.405 (5) ÅT = 293 K
c = 14.930 (5) Å0.30 × 0.25 × 0.20 mm
β = 100.262 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4067 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2586 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.958Rint = 0.030
15331 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.149Δρmax = 0.64 e Å3
S = 1.03Δρmin = 0.34 e Å3
4067 reflectionsAbsolute structure: ?
217 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.67608 (18)0.00360 (19)0.35262 (13)0.0435 (4)
C20.5857 (2)0.0394 (2)0.40363 (16)0.0580 (6)
H20.51260.00950.40130.070*
C30.6040 (3)0.1464 (3)0.45719 (16)0.0685 (7)
H30.54370.16920.49200.082*
C40.7105 (3)0.2208 (2)0.46029 (16)0.0661 (7)
H40.72210.29430.49630.079*
C50.8005 (2)0.1848 (2)0.40896 (14)0.0556 (5)
H50.87250.23520.41090.067*
C60.78602 (17)0.07568 (18)0.35488 (12)0.0417 (4)
C70.88455 (17)0.03869 (17)0.29832 (12)0.0386 (4)
H70.88740.05510.29330.046*
C80.85966 (16)0.09868 (18)0.20073 (12)0.0404 (4)
H80.80240.17230.19920.048*
C90.80786 (17)0.00603 (18)0.12575 (12)0.0401 (4)
C100.8866 (2)0.0566 (2)0.07553 (13)0.0487 (5)
H100.97310.03920.08720.058*
C110.8391 (2)0.1444 (2)0.00832 (14)0.0587 (6)
H110.89330.18640.02430.070*
C120.7101 (2)0.1691 (2)0.00986 (14)0.0582 (6)
H120.67740.22820.05470.070*
C130.6300 (2)0.1062 (2)0.03824 (14)0.0517 (5)
H130.54340.12240.02550.062*
C140.67837 (17)0.01947 (18)0.10528 (12)0.0404 (4)
C150.50032 (19)0.0129 (2)0.18360 (16)0.0538 (5)
H15A0.43890.04040.13140.065*
H15B0.45840.04680.21840.065*
C160.54456 (18)0.1283 (2)0.24204 (15)0.0535 (5)
H16A0.48190.14880.27930.064*
H16B0.55160.20150.20310.064*
C171.05652 (19)0.1675 (2)0.27269 (14)0.0507 (5)
H171.04900.25830.28850.061*
C181.1925 (2)0.1351 (3)0.27092 (18)0.0690 (7)
H18A1.24860.18200.31780.083*
H18B1.21400.15600.21220.083*
C191.1041 (2)0.0106 (2)0.37495 (17)0.0653 (6)
H19A1.06250.09030.38610.078*
H19B1.15400.01860.43200.078*
N11.01005 (14)0.08607 (16)0.33910 (11)0.0472 (4)
O10.66449 (12)0.10640 (12)0.29984 (9)0.0473 (3)
O20.60208 (12)0.05173 (13)0.15245 (9)0.0488 (4)
O30.98101 (12)0.14160 (14)0.18684 (9)0.0507 (4)
S11.20505 (6)0.03571 (7)0.29167 (6)0.0782 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0465 (10)0.0417 (10)0.0441 (10)0.0101 (8)0.0126 (8)0.0106 (8)
C20.0566 (13)0.0594 (14)0.0645 (13)0.0105 (10)0.0288 (11)0.0127 (11)
C30.0815 (18)0.0714 (16)0.0609 (14)0.0299 (14)0.0351 (13)0.0091 (12)
C40.0878 (18)0.0574 (14)0.0537 (12)0.0204 (13)0.0147 (12)0.0083 (11)
C50.0636 (13)0.0524 (13)0.0502 (11)0.0061 (10)0.0086 (10)0.0087 (10)
C60.0450 (10)0.0420 (10)0.0374 (9)0.0067 (8)0.0053 (8)0.0034 (8)
C70.0368 (9)0.0384 (10)0.0402 (9)0.0004 (7)0.0064 (7)0.0012 (8)
C80.0376 (9)0.0396 (10)0.0436 (9)0.0009 (7)0.0061 (7)0.0032 (8)
C90.0437 (10)0.0402 (10)0.0353 (8)0.0010 (8)0.0045 (8)0.0072 (8)
C100.0463 (11)0.0575 (13)0.0429 (10)0.0006 (9)0.0090 (8)0.0003 (9)
C110.0670 (14)0.0629 (14)0.0479 (11)0.0057 (11)0.0153 (10)0.0063 (10)
C120.0724 (15)0.0548 (13)0.0444 (11)0.0044 (11)0.0025 (10)0.0077 (10)
C130.0488 (11)0.0515 (12)0.0514 (11)0.0051 (9)0.0007 (9)0.0001 (10)
C140.0410 (10)0.0410 (10)0.0379 (9)0.0019 (8)0.0036 (8)0.0063 (8)
C150.0374 (10)0.0616 (13)0.0622 (12)0.0019 (9)0.0083 (9)0.0054 (11)
C160.0416 (11)0.0523 (13)0.0676 (13)0.0057 (9)0.0127 (10)0.0010 (10)
C170.0539 (12)0.0419 (11)0.0545 (11)0.0115 (9)0.0044 (9)0.0019 (9)
C180.0471 (12)0.0852 (18)0.0733 (15)0.0232 (12)0.0072 (11)0.0086 (14)
C190.0432 (11)0.0781 (16)0.0700 (14)0.0011 (11)0.0025 (10)0.0228 (13)
N10.0386 (8)0.0540 (10)0.0465 (9)0.0036 (7)0.0012 (7)0.0003 (8)
O10.0407 (7)0.0416 (8)0.0598 (8)0.0031 (6)0.0095 (6)0.0025 (6)
O20.0420 (7)0.0461 (8)0.0591 (8)0.0028 (6)0.0114 (6)0.0029 (6)
O30.0468 (8)0.0582 (9)0.0470 (7)0.0132 (6)0.0076 (6)0.0059 (7)
S10.0494 (4)0.0816 (5)0.1040 (6)0.0119 (3)0.0148 (3)0.0004 (4)
Geometric parameters (Å, º) top
C1—O11.383 (2)C12—C131.378 (3)
C1—C21.386 (3)C12—H120.9300
C1—C61.393 (3)C13—C141.379 (3)
C2—C31.364 (3)C13—H130.9300
C2—H20.9300C14—O21.386 (2)
C3—C41.374 (4)C15—O21.428 (2)
C3—H30.9300C15—C161.510 (3)
C4—C51.386 (3)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C61.386 (3)C16—O11.434 (2)
C5—H50.9300C16—H16A0.9700
C6—C71.515 (3)C16—H16B0.9700
C7—N11.461 (2)C17—O31.415 (2)
C7—C81.564 (2)C17—N11.458 (3)
C7—H70.9800C17—C181.501 (3)
C8—O31.426 (2)C17—H170.9800
C8—C91.506 (3)C18—S11.805 (3)
C8—H80.9800C18—H18A0.9700
C9—C101.388 (3)C18—H18B0.9700
C9—C141.393 (3)C19—N11.457 (3)
C10—C111.386 (3)C19—S11.808 (3)
C10—H100.9300C19—H19A0.9700
C11—C121.386 (3)C19—H19B0.9700
C11—H110.9300
O1—C1—C2122.33 (19)C12—C13—H13120.0
O1—C1—C6116.70 (16)C14—C13—H13120.0
C2—C1—C6120.9 (2)C13—C14—O2122.64 (17)
C3—C2—C1120.0 (2)C13—C14—C9121.01 (18)
C3—C2—H2120.0O2—C14—C9116.27 (16)
C1—C2—H2120.0O2—C15—C16112.49 (16)
C2—C3—C4120.8 (2)O2—C15—H15A109.1
C2—C3—H3119.6C16—C15—H15A109.1
C4—C3—H3119.6O2—C15—H15B109.1
C3—C4—C5119.0 (2)C16—C15—H15B109.1
C3—C4—H4120.5H15A—C15—H15B107.8
C5—C4—H4120.5O1—C16—C15112.16 (16)
C4—C5—C6121.8 (2)O1—C16—H16A109.2
C4—C5—H5119.1C15—C16—H16A109.2
C6—C5—H5119.1O1—C16—H16B109.2
C5—C6—C1117.49 (18)C15—C16—H16B109.2
C5—C6—C7121.07 (18)H16A—C16—H16B107.9
C1—C6—C7121.41 (17)O3—C17—N1107.18 (15)
N1—C7—C6111.36 (15)O3—C17—C18110.00 (18)
N1—C7—C8104.20 (14)N1—C17—C18109.38 (18)
C6—C7—C8113.43 (14)O3—C17—H17110.1
N1—C7—H7109.2N1—C17—H17110.1
C6—C7—H7109.2C18—C17—H17110.1
C8—C7—H7109.2C17—C18—S1105.17 (14)
O3—C8—C9108.52 (14)C17—C18—H18A110.7
O3—C8—C7104.59 (14)S1—C18—H18A110.7
C9—C8—C7114.59 (15)C17—C18—H18B110.7
O3—C8—H8109.7S1—C18—H18B110.7
C9—C8—H8109.7H18A—C18—H18B108.8
C7—C8—H8109.7N1—C19—S1107.90 (15)
C10—C9—C14118.11 (18)N1—C19—H19A110.1
C10—C9—C8121.49 (17)S1—C19—H19A110.1
C14—C9—C8120.40 (16)N1—C19—H19B110.1
C11—C10—C9121.33 (19)S1—C19—H19B110.1
C11—C10—H10119.3H19A—C19—H19B108.4
C9—C10—H10119.3C17—N1—C19110.68 (17)
C12—C11—C10119.3 (2)C17—N1—C7108.30 (15)
C12—C11—H11120.3C19—N1—C7116.49 (17)
C10—C11—H11120.3C1—O1—C16117.03 (14)
C13—C12—C11120.2 (2)C14—O2—C15117.95 (16)
C13—C12—H12119.9C17—O3—C8108.54 (14)
C11—C12—H12119.9C18—S1—C1986.56 (12)
C12—C13—C14120.0 (2)
O1—C1—C2—C3177.59 (19)C10—C9—C14—C131.2 (3)
C6—C1—C2—C30.2 (3)C8—C9—C14—C13178.50 (17)
C1—C2—C3—C41.0 (3)C10—C9—C14—O2175.54 (16)
C2—C3—C4—C50.8 (4)C8—C9—C14—O24.7 (2)
C3—C4—C5—C60.2 (3)O2—C15—C16—O137.5 (3)
C4—C5—C6—C11.0 (3)O3—C17—C18—S183.13 (18)
C4—C5—C6—C7179.23 (18)N1—C17—C18—S134.3 (2)
O1—C1—C6—C5178.67 (16)O3—C17—N1—C19112.63 (19)
C2—C1—C6—C50.8 (3)C18—C17—N1—C196.6 (2)
O1—C1—C6—C73.1 (2)O3—C17—N1—C716.2 (2)
C2—C1—C6—C7179.04 (17)C18—C17—N1—C7135.44 (18)
C5—C6—C7—N127.6 (2)S1—C19—N1—C1724.3 (2)
C1—C6—C7—N1154.15 (16)S1—C19—N1—C7100.01 (18)
C5—C6—C7—C889.5 (2)C6—C7—N1—C17122.40 (17)
C1—C6—C7—C888.7 (2)C8—C7—N1—C170.25 (19)
N1—C7—C8—O315.47 (18)C6—C7—N1—C19112.12 (19)
C6—C7—C8—O3136.75 (16)C8—C7—N1—C19125.24 (18)
N1—C7—C8—C9134.16 (16)C2—C1—O1—C1647.3 (2)
C6—C7—C8—C9104.56 (18)C6—C1—O1—C16134.80 (18)
O3—C8—C9—C1020.6 (2)C15—C16—O1—C151.5 (2)
C7—C8—C9—C1095.9 (2)C13—C14—O2—C1544.0 (2)
O3—C8—C9—C14159.70 (16)C9—C14—O2—C15139.28 (17)
C7—C8—C9—C1483.8 (2)C16—C15—O2—C1455.3 (2)
C14—C9—C10—C111.5 (3)N1—C17—O3—C827.1 (2)
C8—C9—C10—C11178.18 (18)C18—C17—O3—C8145.91 (17)
C9—C10—C11—C120.8 (3)C9—C8—O3—C17148.93 (15)
C10—C11—C12—C130.3 (3)C7—C8—O3—C1726.20 (19)
C11—C12—C13—C140.6 (3)C17—C18—S1—C1940.58 (17)
C12—C13—C14—O2176.39 (17)N1—C19—S1—C1837.84 (17)
C12—C13—C14—C90.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N10.932.512.834 (3)101
C7—H7···O10.982.472.805 (3)100
C10—H10···O30.932.392.728 (3)101
Acknowledgements top

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SK,TS and DV acknowlege the UGC (SAP–CAS) for the departmental facilties. SK thanks the DST PURSE for a Junior Research Fellowship and TS thanks the DST Inspire for a fellowship.

references
References top

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Guo, C. B., Guo, Y. S., Guo, Z. R., Xiao, J. F., Chu, F. M. & Cheng, G. F. (2006). Acta Chim. Sin. 64, 1559–1564.

Karegoudar, P., Karthikeyan, M. S., Prasad, D. J., Mahalinga, M., Holla, B. S. & Kumari, N. S. (2008). Eur. J. Med. Chem. 43, 261–267.

Reddy, K. A., Lohray, B. B., Bhushan, V., Bajji, A. C., Reddy, K. V., Reddy, P. R., Krishna, T. H., Rao, I. N. & Jajoo, H. K. (1999). J. Med. Chem. 42, 1927–1940.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D 65, 148–155.