## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Pyrimidine-4-carboxylic acid

## Katarzyna Kiegiel, Wojciech Starosta and Janusz Leciejewicz*

Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

Received 29 April 2013; accepted 8 May 2013
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$ $R$ factor $=0.048 ; w R$ factor $=0.124$; data-to-parameter ratio $=9.4$.

The crystal structure of the title compound, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$, is built of acid molecules located on a mirror plane. They form sheets stacked along the $b$-axis direction. The molecules interact via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming [001] chains, and weak van der Waals interactions.

## Related literature

For the structure of a Li complex with pyrimidine-4carboxylate and aqua ligands, see: Starosta \& Leciejewicz (2012).

## Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=124.10$
Monoclinic, $P 2_{1} / m$
$a=6.0080(12) \AA$
$b=6.3519$ (13) A
$c=7.4834$ (15) $\AA$
$\beta=112.20(3)^{\circ}$
$V=264.41(9) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.17 \times 0.16 \times 0.06 \mathrm{~mm}$

## Data collection

Kuma KM-4 four-circle diffractometer
Absorption correction: analytical
(CrysAlis RED; Oxford
Diffraction, 2008)
$T_{\text {min }}=0.973, T_{\text {max }}=0.994$
1981 measured reflections

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.124$
$S=1.00$
545 reflections
58 parameters

545 independent reflections
349 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.129$
3 standard reflections every 200 reflections
intensity decay: $0.9 \%$

Table 1
Hydrogen-bond geometry ( $\AA{ }^{\circ}{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$ | $1.04(4)$ | $1.62(4)$ | $2.660(3)$ | $179(3)$ |
| Symmetry code $\cdot$ (i) $x, y, z-1$ |  |  |  |  |

Symmetry code: (i) $x, y, z-1$.

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6903).

## References

Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland. Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.
Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Starosta, W. \& Leciejewicz, J. (2012). Acta Cryst. E68, m1065-m1066.

## supporting information

Acta Cryst. (2013). E69, o885 [doi:10.1107/S1600536813012610]

## Pyrimidine-4-carboxylic acid

## Katarzyna Kiegiel, Wojciech Starosta and Janusz Leciejewicz

## S1. Comment

The monoclinic structure of pyrimidine-4-carboxylic acid $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ is composed of molecular sheets stacked along [010] crystal direction (Fig.1). Within a sheet, hetero-ring and carboxylate group atoms are coplanar. Acid molecules interact via hydrogen bonds of 2.658 (3) A in which protonated carboxylate O atoms are as donors and hetero-ring N atoms in adjacent acid molecules act as acceptors. The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond distances and bond angles within the acid molecule do not differ from those reported earlier in the structure of the Li complex with the title acid (Starosta \& Leciejewicz, 2012). The sheets are held together by van der Waals interactions as indicated by the distance between adjacent sheets which is 3.171 (1) A.

## S2. Experimental

75 ml of a hot (ca 350 K ) aqueous solution containing 31.6 mmol of potassium permanganate was added dropwise during 3 h to 8 ml of stirred aqueous solution containing 21.3 mmol of 4-methylpyrimidine and 5 mmol of NaOH . After stirring for half an hour longer, 1 ml of methanol was added to decompose the excess of potassium permanganate. The hot solution was filtered and the solid washed twice with 5 ml of water. Then, the filtrate and the washings were concentrated to ca 15 ml and acidified to $\mathrm{pH} 2-3$ with concentrated HCl . After cooling to room temperature the precipitate containing 10.5 mmol of crude pyrimidine-4-carboxylic acid was recrystalized from a mixture of water and methanol taken in 20:1 ratio to give 1.1 g . ( 8.9 mmol ) of colourless crystal blocks of the title acid (yield $42 \%$, m.p. $508-509 \mathrm{~K}$ ).

## S3. Refinement

The hydrogen atom attached to the carboxylic group was located in a difference map and refined isotropically, while the three H atoms attached to pyrimidine C atoms were located at a calculated positions and treated as riding on the parent atoms with $\mathrm{C}-\mathrm{H}=0.93 \AA$.


## Figure 1

Molecules of the title compound with atom labelling scheme and $50 \%$ probability displacement ellipsoids viewed along the $b$ axis.

## Pyrimidine-4-carboxylic acid

## Crystal data

## $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$

$M_{r}=124.10$
Monoclinic, $P 2_{1} / m$
Hall symbol: - P 2 yb
$a=6.0080$ (12) $\AA$
$b=6.3519(13) \AA$
$c=7.4834$ (15) $\AA$
$\beta=112.20(3)^{\circ}$
$V=264.41(9) \AA^{3}$
$Z=2$

## Data collection

Kuma KM-4 four-circle
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
profile data from $\omega / 2 \theta$ scan
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
$T_{\min }=0.973, T_{\max }=0.994$
1981 measured reflections
$F(000)=128$
$D_{\mathrm{x}}=1.559 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=6-15^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, colourless
$0.17 \times 0.16 \times 0.06 \mathrm{~mm}$

545 independent reflections
349 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.129$
$\theta_{\text {max }}=25.7^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-7 \rightarrow 7$
$k=-7 \rightarrow 7$
$l=-9 \rightarrow 9$
3 standard reflections every 200 reflections
intensity decay: $0.9 \%$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.124$
$S=1.00$
545 reflections
58 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

# supporting information 

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0689 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001
\end{gathered}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}
\end{aligned}
$$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 | $1.0036(4)$ | 0.2500 | $0.2735(3)$ | $0.0416(6)$ |
| C4 | $0.8398(5)$ | 0.2500 | $0.5171(4)$ | $0.0308(7)$ |
| N1 | $0.9072(4)$ | 0.2500 | $0.8961(3)$ | $0.0397(7)$ |
| N3 | $1.0647(4)$ | 0.2500 | $0.6476(3)$ | $0.0371(7)$ |
| O2 | $0.6049(4)$ | 0.2500 | $0.1835(3)$ | $0.0649(8)$ |
| C7 | $0.8036(5)$ | 0.2500 | $0.3063(4)$ | $0.0364(7)$ |
| C5 | $0.6416(5)$ | 0.2500 | $0.5672(4)$ | $0.0403(8)$ |
| H5 | 0.4860 | 0.2500 | 0.4747 | $0.048^{*}$ |
| C6 | $0.6868(5)$ | 0.2500 | $0.7631(4)$ | $0.0448(9)$ |
| H6 | 0.5573 | 0.2500 | 0.8024 | $0.054^{*}$ |
| C2 | $1.0847(5)$ | 0.2500 | $0.8311(4)$ | $0.0401(8)$ |
| H4 | 1.2401 | 0.2500 | 0.9240 | $0.048^{*}$ |
| H1 | $0.967(6)$ | 0.2500 | $0.126(5)$ | $0.064(11)^{*}$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O1 | $0.0403(11)$ | $0.0677(13)$ | $0.0196(9)$ | 0.000 | $0.0145(8)$ | 0.000 |
| C4 | $0.0308(14)$ | $0.0389(14)$ | $0.0225(13)$ | 0.000 | $0.0097(11)$ | 0.000 |
| N1 | $0.0401(13)$ | $0.0606(16)$ | $0.0208(11)$ | 0.000 | $0.0142(11)$ | 0.000 |
| N3 | $0.0276(11)$ | $0.0651(16)$ | $0.0173(12)$ | 0.000 | $0.0071(9)$ | 0.000 |
| O2 | $0.0364(12)$ | $0.130(2)$ | $0.0206(10)$ | 0.000 | $0.0020(9)$ | 0.000 |
| C7 | $0.0366(15)$ | $0.0507(16)$ | $0.0217(13)$ | 0.000 | $0.0109(12)$ | 0.000 |
| C5 | $0.0287(14)$ | $0.0613(19)$ | $0.0293(15)$ | 0.000 | $0.0093(13)$ | 0.000 |
| C6 | $0.0325(14)$ | $0.072(2)$ | $0.0342(15)$ | 0.000 | $0.0179(12)$ | 0.000 |
| C2 | $0.0304(13)$ | $0.0718(19)$ | $0.0160(12)$ | 0.000 | $0.0062(11)$ | 0.000 |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{O} 1-\mathrm{C} 7$ | $1.314(4)$ | $\mathrm{N} 3-\mathrm{C} 2$ | $1.332(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O} 1-\mathrm{H} 1$ | $1.04(4)$ | $\mathrm{O} 2-\mathrm{C} 7$ | $1.200(3)$ |
| $\mathrm{C} 4-\mathrm{N} 3$ | $1.335(3)$ | $\mathrm{C} 5-\mathrm{C} 6$ | $1.386(4)$ |


| C4-C5 | $1.376(4)$ | $\mathrm{C} 5-\mathrm{H} 5$ | 0.9300 |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 4-\mathrm{C} 7$ | $1.509(3)$ | $\mathrm{C} 6-\mathrm{H} 6$ | 0.9300 |
| N1-C6 | $1.322(4)$ | $\mathrm{C} 2-\mathrm{H} 4$ | 0.9300 |
| N1-C2 | $1.329(4)$ |  |  |
| C7-O1-H1 | $110.9(19)$ | $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $116.4(3)$ |
| N3-C4-C5 | $122.8(2)$ | $\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$ | 121.8 |
| N3-C4-C7 | $118.1(2)$ | $\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$ | 121.8 |
| C5-C4-C7 | $119.1(3)$ | $\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$ | $122.4(3)$ |
| C6-N1-C2 | $116.0(2)$ | N1-C6-H6 | 118.8 |
| C2-N3-C4 | $115.2(2)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$ | 118.8 |
| O2-C7-O1 | $124.9(2)$ | N1-C2-N3 | $127.3(2)$ |
| O2-C7-C4 | $120.6(3)$ | N1-C2-H4 | 116.4 |
| O1-C7-C4 | $114.5(2)$ | N3-C2-H4 | 116.4 |

Hydrogen-bond geometry (A, ${ }^{\text {o }}$ )

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O}-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$ | $1.04(4)$ | $1.62(4)$ | $2.660(3)$ | $179(3)$ |

Symmetry code: (i) $x, y, z-1$.

