organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1R,2S,4S,4aS,8S,8aS)-4-Hydroxy-8,8adimethyl-10-oxo-2,3,4,7,8,8a-hexahydro-1H-4a,1-(epoxymethano)naphthalen-2-yl acetate

Ouassila Selaïmia-Ferdjani,^{a,b} Chahra Bidjou-Haiour,^a Aurelien Planchat^b and Muriel Pipelier^{b*}

^aLaboratoire de Synthèse Organique Modélisation et Optimisation des Procédés Chimiques, Université Badji-Mokhtar Annaba, BP12, 23000 Annaba, Algeria, and ^bUniversité de Nantes, CNRS, Laboratoire CEISAM-UMR 6230, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

Correspondence e-mail: muriel.pipelier@univ-nantes.fr

Received 13 May 2013; accepted 16 May 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.138; data-to-parameter ratio = 18.0.

The title compound, $C_{15}H_{20}O_5$, presents a bisnorsesquiterpene skeleton, with a *trans*-decaline backbone constrained by the lactone bridge. The α -hydroxy substituent and the methyl group belonging to the two decaline rings are in axial positions, whereas the other methyl group and the acyl group occupy the sterically preferred equatorial positions. The molecular structure is stabilized by an intramolecular C- $H \cdots O$ hydrogen bond. In the crystal, molecules are linked into chains along [010] by $O-H \cdots O$ hydrogen bonds

Related literature

For the synthesis, see: Selaimia-Ferdjani et al. (2013). For the biological activity of the natural lactone Paralemnolide A analogue of the title compound, see: Wang et al. (2012) and of related nardosinane sesquiterpene derivatives, see: Bishara et al. (2008); Huang et al. (2011); Petit et al. (2004); Lu et al. (2011). For related nardosinane sesquiterpenes whose biological activity has not been investigated, see: El-Gamal et al. (2005); Huang et al. (2006); Wang & Duh (2007); Wang et al. (2010).

Experimental

Crystal data

λ N

а b

$C_{15}H_{20}O_5$	$V = 722.56 (12) \text{ Å}^3$
$M_r = 280.3$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 10.3312 (10) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 7.1692 (8) Å	T = 293 K
c = 10.8502 (6) Å	$0.48 \times 0.42 \times 0.30 \text{ mm}$
$\beta = 115.958 \ (5)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer	12282 measured reflections
Absorption correction: gaussian	3328 independent reflections
(JANA2006; Petříček et al., 2006)	2774 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.967, \ T_{\max} = 0.972$	$R_{\rm int} = 0.049$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.138$	independent and constrained
S = 1.84	refinement
3328 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
185 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} C10-H3c10\cdots O4\\ O4-H1\cdots O9^{i} \end{array}$	0.96	2.31	2.946 (4)	122.91
	0.83 (5)	2.10 (4)	2.907 (2)	165 (4)

Symmetry code: (i) x, y + 1, z.

Data collection: COLLECT (Nonius, 1998); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: COLLECT (Nonius, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: JANA2006.

The authors thank the Profas Programme for a 18 month PhD felloship for OS-F in the CEISAM laboratory at Nantes University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6907).

References

- Bishara, A., Yeffet, D., Sisso, M., Shmul, G., Schleyer, M., Benayahu, Y., Rudi, A. & Kashman, Y. (2008). *J. Nat. Prod.* **71**, 375–380.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- El-Gamal, A. A. H., Chiu, E. P., Li, C.-H., Cheng, S.-Y., Dai, C.-F. & Duh, C.-Y. (2005). J. Nat. Prod. 68, 1749–1753.
- Huang, H.-C., Su, J.-H., Cheng, S.-Y., Wen, Z.-H., Hsu, C.-H., Dai, C.-F., Sheu, J.-H. & Sung, P.-J. (2011). *Mar. Drugs*, **9**, 1543–1553.
- Huang, H.-C., Wen, Z.-H., Chao, C.-H., Ahmed, A. F., Chiang, M. Y., Kuo, Y.-H., Hsu, C.-H. & Sheu, J.-H. (2006). *Tetrahedron Lett.* **47**, 8751–8755.
- Lu, Y., Li, P.-J., Hung, W.-Y., Su, J.-H., Wen, Z.-H., Hsu, C.-H., Dai, C.-F., Chiang, M. Y. & Sheu, J.-H. (2011). J. Nat. Prod. 74, 169–174.

- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Petit, K. E., Biard, J. F., Lapied, B., Grolleau, F. & Hamon, A. D. (2004). US Patent N2982US/DLR-ABA/40320.
- Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
- Selaimia-Ferdjani, O., Kar, A., Chavan, S. P., Horeau, M., Viault, G., Pouessel, J., Guillory, X., Blot, V., Tessier, A., Bidjou-Haiour, C., Planchat, A., Jacquemin, D., Dubreuil, D. & Pipelier, M. (2013). Org. Lett. Submitted.
- Wang, S.-K. & Duh, C.-Y. (2007). Chem. Pharm. Bull. 55, 762–765.
- Wang, G.-H., Huang, H.-C., Su, J.-H., Wu, Y.-C. & Sheu, J.-H. (2010). Chem. Pharm. Bull. 58, 30–33.
- Wang, S.-K., Lee, Y.-S. & Duh, C.-Y. (2012). Mar. Drugs, 10, 1528-1535.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.

supporting information

Acta Cryst. (2013). E69, o938-o939 [doi:10.1107/S1600536813013524]

(1*R*,2*S*,4*S*,4*aS*,8*S*,8*aS*)-4-Hydroxy-8,8a-dimethyl-10-oxo-2,3,4,7,8,8a-hexahydro-1*H*-4a,1-(epoxymethano)naphthalen-2-yl acetate

Ouassila Selaïmia-Ferdjani, Chahra Bidjou-Haiour, Aurelien Planchat and Muriel Pipelier

S1. Comment

Several nardosinane sesquiterpene derivatives, extracted from different soft corals (Lemnalia, Paralemnalia, Rhytisma and others), have already expressed promising biological properties (Bishara *et al.* 2008; Huang *et al.* 2011; Lu *et al.* 2011; Petit *et al.* 2004; Wang *et al.* 2012) while the potential of others remains to be explored (El-Gamal *et al.* 2005; Huang *et al.* 2006; Wang and Duh 2007; Wang *et al.* 2010). In our continuing interest in the total synthesis of biologically active compounds, we have recently proposed a synthetic strategy to access such sesquiterpene derivatives. In the course of the synthesis, the title compound appeared as an analogue structurally close to the natural lactone Paralemnolide A (Wang *et al.* 2012) which possesses cytotoxic activity. We report herein on the crystal structure of a new nardosinane sesquiterpene analogue.

The title compound presents a bisnorsesquiterpene skeleton, with a *trans*-decaline backbone constrained by the lactone bridge. The α -hydroxy substituent and the methyl group belonging to the two decaline rings are in an axial position, whereas the other methyl group and the acyl group occupy the sterically preferred equatorial position. In the crystal, the molecules form chains connected by O-H···O hydrogen bonds. The crystal structure is further stabilized by C-H···O contacts.

S2. Experimental

Title compound was synthesized according to the reported method (Selaimia-Ferdjani *et al.*, 2013): To a solution of diene **1** (100 mg, 0.38 mmol) in CH₂Cl₂ (2.5 ml) at 0°C was added *via* cannula a solution of mCPBA (350 mg, 0.38 mmol) in CH₂Cl₂ (5.0 ml). After 20 min, the reaction mixture was quenched with saturated NaHCO₃ solution (10 ml). The aqueous layer was extracted with CH₂Cl₂ (3 *x* 25 ml) then the combined organic layers were washed with brine (50 ml), dried over MgSO₄, filtered and concentrated under vacuum. The residue was purified by flash chromatography (eluant Petroleum Ether-EtOAc 100/0 to 7/3) to afford lactone **2** (title compound) (63 mg, 60%) as a solide. Crystals suitable for X-ray structure analysis (colorless crystals) were obtained by slow evaporation of a solution of the title compound in ethyl acetate/hexane (1:1, *v/v*) at room temperature. **mp** = 434 K; **[a]²⁰**_D = - 17 (*c* = 0.29 in CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) d 6.28 (ddd, *J*₆₋₅ = 10.1 Hz, *J*₆₋₇ = 4.7 Hz, *J*₆₋₇ = 1.5 Hz, 11H, H₆), 5.69 (d, *J*₆₋₅ = 10.1 Hz, 1H, H₃), 5.45 (ddd, *J*₂₋₁ = 3.1 Hz, *J*₃₋₂ = 7.2 Hz, *J*₃₋₂ = 10.4 Hz, 1H, H₂), 4.27 (d, *J*₄₋₃ = 6.6 Hz, 1H, H₄), 2.82 (d, *J*₂₋₁ = 3.1 Hz, 1H, H₁), 2.39 (m, 1H, H₃), 2.15 (s, 3H, H₁₃), 1.91–2.35 (m, 4H, H₃, H₇, H₇, H₈), 1.27 (s, 3H, H₁₀), 0.90 (d, *J*₈₋₁₁ = 6.5 Hz, 3H, H₁₁). MS (EI): *m/z* (%₀ = 220 (28), 124 (96), 109 (72), 95 (29), 43 (100) HRMS (ESI⁺): calcd. for [*M*+Na]⁺ (C₁₅H₂₀O₅Na) 303.12029, found 303.12015; elemental analysis calcd (%) C₁₅H₂₀O₅: C 64.27, H 7.19, found: C 64.24, H 7.16.

S3. Refinement

H atoms bonded to C atoms were positioned with idealized geometry and were refined with $U_{iso}(H) = 1.2 \times U_{eq}(C)$) using a riding model with C—H = 0.96 Å. The H atom bonded to the O atom was located from a difference Fourier syntheses and it was freely refined.

Figure 1

Synthetic scheme to prepare title compound.

Figure 2

ORTEP drawing of the X-Ray crystallographic structure of the title molecule, with atom labeling. The displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius

Figure 3

Portion of the crystal structure showing the packing of the H–bonded infinite chains of the title compound. The intermolecular O-H…O bonds are depicted by blue lines.

(1R,2S,4S,4aS,8S,8aS)-4-Hydroxy-8,8a-dimethyl-10-oxo-2,3,4,7,8,8a-hexahydro-1H-

4a,1-(epoxymethano)naphthalen-2-yl acetate

Crystal data	
$C_{15}H_{20}O_5$ $M_r = 280.3$ Monoclinic, P2 ₁ Hall symbol: P 2yb $a = 10.3312 (10) \text{ Å}$ $b = 7.1692 (8) \text{ Å}$ $c = 10.8502 (6) \text{ Å}$ $\beta = 115.958 (5)^{\circ}$ $V = 722.56 (12) \text{ Å}^3$	Z = 2 F(000) = 300 $D_x = 1.288 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.48 \times 0.42 \times 0.30 \text{ mm}$
Data collection	10000
Nomus KappaCCD diffractometer Radiation source: X-ray tube Graphite monochromator CCD, φ and ω frames scans Absorption correction: gaussian (<i>JANA2006</i> ; Petříček <i>et al.</i> , 2006) $T_{\min} = 0.967, T_{\max} = 0.972$	12282 measured reflections 3328 independent reflections 2774 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 28.1^{\circ}, \ \theta_{min} = 6.5^{\circ}$ $h = -13 \rightarrow 13$ $k = -9 \rightarrow 9$ $l = -14 \rightarrow 14$

Refinement on F^2	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.050$	and constrained refinement
$wR(F^2) = 0.138$	Weighting scheme based on measured s.u.'s $w =$
S = 1.84	$1/(\sigma^2(I) + 0.0025000002I^2)$
3328 reflections	$(\Delta/\sigma)_{\rm max} = 0.013$
185 parameters	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.12 \text{ e} \text{ Å}^{-3}$
77 constraints	

Fractional atomic coordinates and isotr	ropic or equiva	lent isotropic displacer	nent parameters (Ų)
---	-----------------	--------------------------	---------------------

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	
O4a	-0.24245 (17)	-0.3248 (2)	-0.96277 (13)	0.0469 (6)	
O2	0.13229 (15)	-0.5347 (2)	-0.74186 (16)	0.0540 (6)	
09	-0.1870 (2)	-0.6248 (2)	-0.95660 (17)	0.0580 (7)	
O4	-0.0236 (2)	0.0757 (2)	-0.7741 (2)	0.0747 (9)	
O12	0.3391 (2)	-0.4418 (4)	-0.5763 (2)	0.0969 (10)	
C1	-0.0910 (2)	-0.4390 (3)	-0.74640 (18)	0.0373 (6)	
C2	0.0592 (2)	-0.3717 (3)	-0.7223 (2)	0.0452 (8)	
C3	0.0495 (3)	-0.2237 (3)	-0.8268 (3)	0.0614 (11)	
C4	-0.0719 (3)	-0.0820(3)	-0.8628 (3)	0.0554 (10)	
C5	-0.3316 (3)	-0.0382 (3)	-0.9057 (3)	0.0649 (10)	
C6	-0.4264 (3)	-0.0442 (5)	-0.8551 (3)	0.0789 (12)	
C7	-0.4257 (3)	-0.1856 (5)	-0.7544 (3)	0.0787 (13)	
C8	-0.3245 (2)	-0.3495 (4)	-0.7387 (2)	0.0565 (9)	
C9	-0.1760 (2)	-0.4802 (3)	-0.8969 (2)	0.0409 (7)	
C10	-0.0991 (3)	-0.1656 (4)	-0.5957 (2)	0.0558 (9)	
C11	-0.3100 (3)	-0.4779 (6)	-0.6212 (3)	0.0855 (15)	
C12	0.2732 (2)	-0.5534 (3)	-0.6613 (2)	0.0504 (8)	
C13	0.3297 (3)	-0.7288 (4)	-0.6924 (3)	0.0661 (11)	
C8a	-0.1778 (2)	-0.2776 (3)	-0.72788 (18)	0.0400 (7)	
C4a	-0.2064 (2)	-0.1689 (3)	-0.8603 (2)	0.0446 (7)	
H1c5	-0.343345	0.053419	-0.97428	0.0778*	
H1c6	-0.500769	0.048719	-0.885126	0.0947*	
H1c7	-0.521658	-0.231528	-0.781906	0.0945*	
H2c7	-0.398331	-0.127184	-0.666953	0.0945*	
H1c8	-0.365931	-0.42545	-0.819637	0.0678*	
H1c11	-0.262203	-0.590901	-0.625442	0.1026*	
H2c11	-0.254686	-0.416546	-0.535349	0.1026*	
H3c11	-0.403884	-0.507108	-0.628833	0.1026*	
H1c10	-0.162091	-0.070956	-0.590084	0.0669*	
H2c10	-0.070651	-0.247485	-0.518177	0.0669*	
H3c10	-0.015259	-0.108038	-0.595774	0.0669*	
H1c1	-0.078238	-0.541924	-0.68555	0.0448*	
H1c2	0.108852	-0.317946	-0.632628	0.0543*	
H1c13	0.266544	-0.830237	-0.698342	0.0793*	
H2c13	0.335007	-0.715916	-0.778133	0.0793*	
H3c13	0.42399	-0.753581	-0.620827	0.0793*	

supporting information

H1c3	0.041767	-0.283227	-0.908981	0.0736*	
H2c3	0.139807	-0.159392	-0.795406	0.0736*	
H1c4	-0.099131	-0.040857	-0.955087	0.0665*	
H1	-0.056 (5)	0.173 (7)	-0.818 (4)	0.107 (13)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
O4a	0.0587 (9)	0.0363 (7)	0.0343 (7)	-0.0011 (7)	0.0100 (6)	-0.0009 (5)
O2	0.0389 (8)	0.0493 (8)	0.0649 (9)	0.0047 (7)	0.0145 (7)	-0.0114 (8)
09	0.0699 (11)	0.0392 (7)	0.0577 (9)	-0.0061 (8)	0.0212 (8)	-0.0126 (7)
O4	0.0777 (13)	0.0319 (8)	0.0961 (15)	-0.0112 (8)	0.0212 (11)	-0.0057 (9)
012	0.0516 (11)	0.1034 (17)	0.1043 (16)	0.0019 (11)	0.0053 (10)	-0.0446 (15)
C1	0.0363 (9)	0.0341 (8)	0.0368 (9)	-0.0012 (8)	0.0116 (7)	0.0027 (8)
C2	0.0379 (10)	0.0385 (9)	0.0574 (12)	-0.0036 (8)	0.0191 (9)	-0.0110 (9)
C3	0.0679 (15)	0.0409 (10)	0.0914 (18)	-0.0106 (11)	0.0498 (14)	-0.0025 (12)
C4	0.0704 (16)	0.0313 (10)	0.0618 (14)	-0.0047 (10)	0.0264 (12)	0.0031 (9)
C5	0.0615 (15)	0.0462 (11)	0.0603 (14)	0.0115 (12)	0.0022 (12)	0.0025 (11)
C6	0.0530 (15)	0.0752 (17)	0.0814 (18)	0.0256 (15)	0.0043 (13)	-0.0116 (16)
C7	0.0430 (13)	0.105 (2)	0.0816 (18)	0.0144 (15)	0.0214 (12)	-0.0156 (17)
C8	0.0391 (11)	0.0744 (15)	0.0528 (12)	-0.0025 (11)	0.0171 (9)	-0.0064 (12)
C9	0.0448 (10)	0.0342 (9)	0.0414 (9)	-0.0066 (8)	0.0168 (8)	-0.0016 (8)
C10	0.0477 (12)	0.0648 (14)	0.0440 (11)	0.0048 (11)	0.0100 (9)	-0.0161 (11)
C11	0.0634 (18)	0.123 (3)	0.0822 (18)	-0.0143 (19)	0.0428 (15)	0.011 (2)
C12	0.0388 (10)	0.0562 (12)	0.0541 (12)	0.0009 (10)	0.0183 (9)	0.0023 (11)
C13	0.0491 (13)	0.0702 (15)	0.0796 (16)	0.0127 (12)	0.0289 (12)	0.0025 (14)
C8a	0.0353 (9)	0.0430 (9)	0.0351 (9)	0.0008 (8)	0.0091 (7)	-0.0031 (8)
C4a	0.0498 (11)	0.0325 (8)	0.0406 (10)	0.0004 (8)	0.0097 (8)	-0.0019 (8)

Geometric parameters (Å, °)

O4a—C9	1.340 (2)	C5—H1c5	0.96	
O4a—C4a	1.504 (2)	C6—C7	1.488 (5)	
O2—C2	1.456 (3)	C6—H1c6	0.96	
O2—C12	1.337 (2)	C7—C8	1.532 (4)	
О9—С9	1.201 (3)	C7—H1c7	0.96	
O4—C4	1.426 (3)	C7—H2c7	0.96	
O4—H1	0.83 (5)	C8—C11	1.526 (5)	
O12—C12	1.185 (3)	C8—C8a	1.556 (3)	
C1—C2	1.535 (3)	C8—H1c8	0.96	
С1—С9	1.507 (3)	C10—C8a	1.531 (3)	
C1—C8a	1.530(3)	C10—H1c10	0.96	
C1—H1c1	0.96	C10—H2c10	0.96	
С2—С3	1.524 (4)	C10—H3c10	0.96	
C2—H1c2	0.96	C11—H1c11	0.96	
C3—C4	1.526 (4)	C11—H2c11	0.96	
C3—H1c3	0.96	C11—H3c11	0.96	
С3—Н2с3	0.96	C12—C13	1.486 (4)	

C4—C4a	1.534 (4)	C13—H1c13	0.96
C4—H1c4	0.96	C13—H2c13	0.96
C5—C6	1.316 (5)	C13—H3c13	0.96
C5—C4a	1.495 (3)	C8a—C4a	1.545 (3)
C9—O4a—C4a	108.72 (13)	C7—C8—H1c8	108.87
C2—O2—C12	118.11 (17)	C11—C8—C8a	113.63 (18)
C4—O4—H1	111 (3)	C11-C8-H1c8	105.3
C2—C1—C9	108.2 (2)	C8a—C8—H1c8	106.65
C2—C1—C8a	110.30 (16)	O4a—C9—O9	121.67 (17)
C2-C1-H1c1	107.44	O4a—C9—C1	109.53 (16)
C9—C1—C8a	101.19 (14)	O9—C9—C1	128.80 (17)
C9-C1-H1c1	115.73	C8a—C10—H1c10	109.47
C8a—C1—H1c1	113.8	C8a—C10—H2c10	109.47
O2—C2—C1	105.87 (16)	C8a—C10—H3c10	109.47
02-C2-C3	108.7 (2)	H1c10-C10-H2c10	109.47
Ω_{2} C_{2} $H_{1}c_{2}$	112.88	H1c10— $C10$ — $H3c10$	109.47
C1 - C2 - C3	111.08 (17)	H_{2c10} C_{10} H_{3c10}	109.47
C1-C2-H1c2	110.54	C8-C11-H1c11	109.47
$C_3 - C_2 - H_1c_2$	107.84	C8-C11-H2c11	109.47
$C_2 - C_3 - C_4$	115 7 (3)	C8-C11-H3c11	109.17
$C_2 - C_3 - H_1c_3$	109 47	H_1c_{11} — C_{11} — H_2c_{11}	109.47
$C_2 = C_3 = H_2 c_3$	109.47	H_1c_{11} $-C_{11}$ $-H_3c_{11}$	109.17
$C_4 - C_3 - H_{1}C_3$	109.17	H_{2c11} $-C_{11}$ $-H_{3c11}$	109.17
C4-C3-H2c3	109.47	02-C12-012	102.47 122.1(2)
H_{1c3} C_{3} H_{2c3}	102.43	02 - C12 - C13	122.1(2)
04-C4-C3	110 43 (19)	012 - 012 - 013	126.8(2)
$O_{4} - C_{4} - C_{4}$	110.43(1)	$C_{12} = C_{13} = H_{1c}^{-13}$	109.47
O4 - C4 - H1c4	108.45	$C_{12} = C_{13} = H_{2c_{13}}$	109.47
$C_3 - C_4 - C_{4_2}$	111 97 (19)	$C_{12} = C_{13} = H_{3}c_{13}$	109.47
$C_3 = C_4 = C_{4a}$	107.71	$H_{12}^{-13} = C_{13}^{-13} + H_{213}^{-13}$	109.47
$C_{42} = C_{4} = H_{1}c_{4}$	107.71	$H_{1c13} = C_{13} = H_{2c13}$	109.47
$C_{4a} - C_{4} - IIIC_{4}$	122 5 (3)	$H_{2}^{-13} = C_{13}^{-13} = H_{2}^{-13}$	109.47
$C_{0} = C_{3} = C_{4a}$	122.5 (5)	112c13 - C13 - 113c13	109.47
$C_0 = C_5 = H_{125}$	118.70	$C_1 = C_{0a} = C_0$	110.26(18) 114.76(15)
C4a—C5—FIC5	110.70 124.2(2)	$C_1 = C_{8a} = C_{10}$	114.70(13)
$C_{3} = C_{0} = C_{1}$	124.5 (5)	$C^{2} = C^{2} = C^{10}$	98.29 (18)
C_{3} C_{6} H_{1}	117.07	$C_{0} = C_{0} = C_{10}$	110.2(2)
C = C = C = C = C = C = C = C = C = C =	117.87	C_{8} C_{4a} C_{4a}	108.26(15)
$C_{6} - C_{7} - C_{8}$	112.8 (3)	C10 - C8a - C4a	114.46 (17)
C_{0} C_{1} H_{1}	109.47	04a - 04a - 04a	102.8 (2)
$C_0 = C_1 = H_2 C_1$	109.47	U4a - U4a - U5	108.89 (15)
$U_{0} = U_{1} = H_{1}C_{1}$	109.47	U4a - C4a - C8a	101.57 (14)
$U_{\delta} - U_{\ell} - H_{2}U_{\ell}$	109.47	C4 - C4a - C5	113.57 (19)
H1c/-C/-H2c7	105.88	C4—C4a—C8a	114.52 (16)
C'/C8C11	111.6 (3)	C5—C4a—C8a	114.1 (2)
C7—C8—C8a	110.4 (2)		

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C8—H1 <i>c</i> 8···C9	0.96	2.48	2.913 (4)	107.28
C10—H3c10····O4	0.96	2.31	2.946 (4)	122.91
C2—H1c2···O12	0.96	2.36	2.668 (3)	98.20
O4—H1…O9 ⁱ	0.83 (5)	2.10 (4)	2.907 (2)	165 (4)

Hydrogen-bond geometry (Å, °)

Symmetry code: (i) x, y+1, z.