[Journal logo]

Volume 69 
Part 6 
Page m345  
June 2013  

Received 14 May 2013
Accepted 23 May 2013
Online 31 May 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.003 Å
R = 0.028
wR = 0.075
Data-to-parameter ratio = 17.1
Details
Open access

catena-Poly[[bis(pyridine-[kappa]N)zinc]-[mu]-5-carboxybenzene-1,3-dicarboxylato-[kappa]2O1:O3]

aDivision of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand, and bDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
Correspondence e-mail: apinpus@chiangmai.ac.th

The title one-dimensional coordination polymer, [Zn(C9H4O6)(C5H5N)2]n or [Zn(HBTC)(py)2]n, (I), where BTC is benzene-1,3,5-tricarboxylate and py is pyridine, is a solvent-free polymorph of [Zn(HBTC)(py)2]·2C2H5OH [Yaghi et al. (1997[Yaghi, O. M., Li, G. & Li, H. (1997). Chem. Mater. 9, 1074-1076.]). Chem. Mater. 9, 1074-1076]. Differences in the spatial arrangements and supramolecular packing of the [Zn(HBTC)(py)2]n chains in the two structures are described. The chain in (I) extends parallel to [100] and is severely puckered, with a Zn...Zn distance of 8.3599 (3) Å and a Zn...Zn...Zn angle of 107.516 (3)°, as a result of hydrogen-bonding interactions of the types O-H...O and C-H...O. There is no evidence for [pi]-[pi] interactions in (I). The differences between the solvent-free and solvent-containing structures can be accounted for by the absence of the ethanol solvent molecule and the use of the converging pair of O atoms in the bis-monodentate bridging HBTC2- ligand in (I).

Related literature

For the ethanol monosolvate of (I), see: Yaghi et al. (1997[Yaghi, O. M., Li, G. & Li, H. (1997). Chem. Mater. 9, 1074-1076.]). For a review on supramolecular isomerism in coordination compounds, see: Zhang et al. (2009[Zhang, J.-P., Huang, X.-C. & Chen, X.-M. (2009). Chem. Soc. Rev. 38, 2385-2396.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H4O6)(C5H5N)2]

  • Mr = 431.69

  • Orthorhombic, P b c a

  • a = 13.4850 (4) Å

  • b = 15.7677 (4) Å

  • c = 16.7252 (4) Å

  • V = 3556.24 (16) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 1.42 mm-1

  • T = 293 K

  • 0.40 × 0.32 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.638, Tmax = 0.746

  • 18851 measured reflections

  • 4402 independent reflections

  • 3448 reflections with I > 2[sigma](I)

  • Rint = 0.027

Refinement
  • R[F2 > 2[sigma](F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.03

  • 4402 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.32 e Å-3

  • [Delta][rho]min = -0.27 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O5-H5W...O3i 0.86 (3) 1.74 (3) 2.5813 (19) 164 (3)
C1-H1...O1 0.93 2.45 3.053 (2) 122
C5-H5...O6ii 0.93 2.39 3.129 (3) 136
C17-H17...O5 0.93 2.37 2.693 (2) 100
C17-H17...O5i 0.93 2.42 3.309 (2) 159
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CQ2004 ).


Acknowledgements

This work was financially supported by the Thailand Research Fund and the National Research University Project.

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Yaghi, O. M., Li, G. & Li, H. (1997). Chem. Mater. 9, 1074-1076.  [CrossRef] [ChemPort] [ISI]
Zhang, J.-P., Huang, X.-C. & Chen, X.-M. (2009). Chem. Soc. Rev. 38, 2385-2396.  [CrossRef] [PubMed] [ChemPort]


Acta Cryst (2013). E69, m345  [ doi:10.1107/S1600536813014347 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.