Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Acetoxy- γ-valerolactone

Cameron Tristram, Graeme J. Gainsford* and Simon Hinkley

Carbohydrate Chemistry Group, Callaghan Innovation Research Limited, PO Box 31310, Lower Hutt, New Zealand
Correspondence e-mail: graeme.gainsford@callaghaninnovation.govt.nz
Received 9 May 2013; accepted 17 May 2013
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.032 ; w R$ factor $=0.084$; data-to-parameter ratio $=14.4$.

Levulinyl cellulose esters have been produced as an effective renewable binder for architectural coatings. The title compound, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{4}$ (systematic name: 2-methyl-5-oxotetra-hydrofuran- $2-\mathrm{yl}$ acetate), assigned as the esterifying species, was isolated and crystallized to confirm the structure. In the crystal, the molecules pack in layers parallel to (102) utilizing weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Related literature

For related structures, see: Cai et al. (2004). For hydrogenbonding motifs, see: Bernstein et al. (1995). For background information, see: Bredt (1886); Rasmussen \& Brattain (1949); Suami \& Day (1959); Glenny et al. (2012). For a previous description of the title compound but without supporting crystal structure data, see: Bell \& Covington (1975).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{4}$
$M_{r}=158.15$
Monoclinic, $P 2_{1} / c$
$a=5.86715(15) \AA$
$b=12.7280(3) \AA$

$$
\begin{aligned}
& c=10.2756(3) \AA \\
& \beta=106.020(3)^{\circ} \\
& V=737.55(3) \AA^{3} \\
& Z=4 \\
& \mathrm{Cu} \mathrm{~K} \alpha \text { radiation }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{i}}$	0.99	2.68	$3.5827(13)$	152
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.98	2.63	$3.4617(14)$	142

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$.
Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 2012); software used to prepare material for publication: SHELXL2012 and PLATON (Spek, 2009).

We thank Dr Matthew Polson of the University of Canterbury, New Zealand, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5410).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
Bell, R. P. \& Covington, A. D. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 13431348.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bredt, J. (1886). Ann. Chem. 236, 225-232.
Cai, Y., Roberts, B. P., Tocher, D. A. \& Barnett, S. A. (2004). Org. Biomol. Chem. 2, 2517-2529.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Glenny, M., Gooch, C., Hinkley, S., Mason, J., Tristram, C. \& Williams, D. (2012). NZ Patent No. PCT/NZ2012/000728.

Rasmussen, R. S. \& Brattain, R. R. (1949). J. Am. Chem. Soc. 71, 1073-1079.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Suami, T. \& Day, A. R. (1959). J. Org. Chem. 24, 1340-1343.

supporting information

Acta Cryst. (2013). E69, o952 [doi:10.1107/S1600536813013561]

Acetoxy- γ-valerolactone

Cameron Tristram, Graeme J. Gainsford and Simon Hinkley

S1. Comment

Acetoxy- γ-valerolactone (2-methyl-5-oxotetrahydrofuran-2-yl acetate) was first described by Bredt (1886) and became of interest during our investigation of novel, renewable levulinyl cellulose esters. Esterification of cellulose in the presence of levulinic acid and an aliphatic anhydride affords a mixed cellulose levulinyl ester which we have shown has particular utility in architectural coatings [Glenny et al., 2012]. Levulinyl acetyl cellulose was generated by the sulfuric acid catalysed esterification of cellulose in the presence of acetic anhydride and levulinic acid. Analysis of this reaction mixture indicated that a valero-lactone species predominated rather than the anticipated mixture of anhydrides.

Acetoxy- γ-valerolactone was isolated by flash chromatography and identified as the major species in the reaction solution and has been assigned as the esterifying reagent. The generation of acetoxy- γ-valerolactone from acetic anhydride and levulinic acid had previously been reported (Rasmussen \& Brattain, 1949) and also had been shown to be an esterifying agent forming levulinyl and acetyl amides (Suami \& Day, 1959). When isolated in our hands, acetoxy- γ valerolactone remained as a super cooled liquid, much like levulinic acid which exists as a light yellow solid or liquid, but will crystalize and displays a melting point between $30-33^{\circ} \mathrm{C}$. Bell and Covington (1975) described the material as a solid with a melting point between $75-76^{\circ} \mathrm{C}$ but without supporting crystal structure data. The molecule was therefore crystallized from DCM and petroleum ether and the crystal structure elucidated. This confirmed the molecular structure and assisted with investigation into its esterification chemistry.
The title compound, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{4}$, crystallizes with one unique molecule per asymetric unit. The five-membered ring adopts a flattened envelope conformation with O 1 atom as a flap which deviates by 0.128 (1) \AA from the mean plane P formed by the four C atoms. The acetate fragment is oriented in such a way that its mean plane and plane P are almost perpendicular to each other with an interplanar angle of $83.18(7)^{\circ}$. There are no closely related structures in the Cambridge Structural Database, the closest being 5-(1-adamantyl)-5-ethoxytetrahydrofuran-2-one, LAGQUG (Cai et al., 2004).

In the crystal, weak $\mathrm{C}_{\text {methyl }}-H \cdots \mathrm{O}_{\text {acetate }}$ hydrogen bonds link the molecules into centrosymmetric dimers with the well known $R^{2}{ }_{2}(8)$ motif (Bernstein et al., 1995), and weak $\mathrm{C}_{\text {methylene }}-\mathrm{H} \cdots \mathrm{O}_{\text {ketone }}$ interactions (Table 1) link further these dimers into layers parallel to (102). Table 1.

S2. Experimental

Levulinic acid ($5.24 \mathrm{~g}, 45.1 \mathrm{mmol}$), acetic anhydride ($3.46,33.9 \mathrm{mmol}$) and concentrated sulfuric acid (12.9 mg , $129 \mu \mathrm{~mol}$) were placed in a 50 ml round bottom flask. The solution was heated to $120^{\circ} \mathrm{C}$ for 10 min with stirring, then quenched with 8 ml of a $5 \% \mathrm{Mg}(\mathrm{OAc})_{2}$ solution in $50 / 50$ acetic acid water. The reaction solution was extracted with DCM recovering an orange brown liquid. A portion of the recovered material was purified with flash chromatography; the column was packed with $40-63 \mu \mathrm{~m}$ silica, (Davisil) to the dimensions of $110 \times 35 \mathrm{~mm}$. A gradient solvent system was used (petroleum ether/ethyl acetate $60 / 40(400 \mathrm{ml}), 50 / 50(200 \mathrm{ml}), 30 / 70(200 \mathrm{ml}), 10 / 90(200 \mathrm{ml})$) to separate and elute
the 4 -acetoxy- γ-valerolactone ($\operatorname{Rf} 0.42$ in 60/40 petroleum ether/ethyl acetate). Suitable crystals were obtained by recrystallization from DCM and petroleum ether.
4-Acetoxy- γ-valerolactone m.p. $72-74^{\circ} \mathrm{C}(\mathrm{DSC}):{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.77(\mathrm{~s}, \mathrm{H}-3), 2.06\left(\mathrm{~s}, \mathrm{H}-1^{\prime}\right), 2.31$ (ddd, $\mathrm{H}-2, J 8.8,10.6,18.7 \mathrm{~Hz}$), $2.61\left(\mathrm{~m}, \mathrm{H}-1\right.$ and H-2), 2.87 (ddd, $\mathrm{H}-1, J 7.75,9.95,17.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 21.6$
$\left(\mathrm{C}-1^{\prime}, \mathrm{OC}(\mathrm{O}) \mathrm{CH}_{3}\right), 26.1\left(\mathrm{C}-5, \mathrm{CCH}_{3}\right), 28.5\left(\mathrm{C}-2, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 32.7\left(\mathrm{C}-3, \mathrm{CH}_{2} \mathrm{C}\right), 108.4(\mathrm{C}-4$, Quaternary $), 169.2\left(\mathrm{C}-1^{\prime}\right), 175.4$ (C-1); TOF-HRMS found 181.0472; $\left[\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NaO}_{4}\right]+$ calc. 181.0477.

S3. Refinement

All methyl H atoms were constrained to an ideal geometry $(\mathrm{C}-\mathrm{H}=0.98 \AA)$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the adjacent $\mathrm{C}-\mathrm{C}$ bond. All other C bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

ORTEP (Farrugia, 2012) view of the title molecule showing the atomic numbering and 50% probability displacement ellipsoids.

2-Methyl-5-oxotetrahydrofuran-2-yl acetate

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{4}$
$M_{r}=158.15$
Monoclinic, $P 2{ }_{1} / c$
$a=5.86715$ (15) \AA
$b=12.7280$ (3) \AA
$c=10.2756(3) \AA$
$\beta=106.020(3)^{\circ}$
$V=737.55(3) \AA^{3}$
$Z=4$
$F(000)=336$
$D_{\mathrm{x}}=1.424 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 3083 reflections
$\theta=5.7-73.5^{\circ}$
$\mu=1.00 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, colourless
$0.19 \times 0.12 \times 0.07 \mathrm{~mm}$

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Radiation source: SuperNova (Cu) X-ray Source
Mirror monochromator
Detector resolution: 5.3250 pixels mm^{-1}
ω scans
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)

$$
\begin{aligned}
& T_{\min }=0.812, T_{\max }=1.000 \\
& 4959 \text { measured reflections } \\
& 1469 \text { independent reflections } \\
& 1350 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.031 \\
& \theta_{\max }=73.8^{\circ}, \theta_{\min }=5.7^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-13 \rightarrow 15 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.084$
$S=1.03$
1469 reflections
102 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2013); numerical absorption correction based on gaussian integration over a multifaceted crystal model
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
O1	$0.25087(13)$	$0.23353(6)$	$0.37683(8)$	$0.01787(19)$
O2	$0.01399(17)$	$0.10362(7)$	$0.27499(9)$	$0.0268(2)$
O3	$0.32805(14)$	$0.40425(6)$	$0.32322(8)$	$0.0179(2)$
O4	$0.04509(15)$	$0.35237(6)$	$0.13677(8)$	$0.0226(2)$
C1	$0.4004(2)$	$0.36108(9)$	$0.55163(11)$	$0.0217(3)$
H1A	0.3518	0.3185	0.6188	0.033^{*}
H1B	0.3959	0.4356	0.5747	0.033^{*}
H1C	0.5620	0.3418	0.5514	0.033^{*}
C2	$0.23376(19)$	$0.34162(8)$	$0.41354(11)$	$0.0166(2)$
C3	$-0.0297(2)$	$0.36272(9)$	$0.40270(11)$	$0.0187(2)$
H3A	-0.0526	0.3758	0.4932	0.022^{*}
H3B	-0.0882	0.4243	0.3442	0.022^{*}
C4	$-0.1589(2)$	$0.26306(9)$	$0.34032(12)$	$0.0206(2)$
H4A	-0.2462	0.2319	0.4007	0.025^{*}
H4B	-0.2728	0.2785	0.2516	0.025^{*}
C5	$0.0322(2)$	$0.18993(9)$	$0.32378(11)$	$0.0187(2)$
C6	$0.2205(2)$	$0.40306(8)$	$0.18841(11)$	$0.0185(2)$

C7	$0.3555(2)$	$0.46800(9)$	$0.11343(12)$	$0.0236(3)$
H7A	0.4708	0.4236	0.0862	0.035^{*}
H7B	0.4391	0.5245	0.1723	0.035^{*}
H7C	0.2451	0.4984	0.0327	0.035^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0182(4)$	$0.0148(4)$	$0.0212(4)$	$0.0003(3)$	$0.0065(3)$	$0.0008(3)$
O2	$0.0346(5)$	$0.0185(4)$	$0.0294(5)$	$-0.0052(3)$	$0.0121(4)$	$-0.0058(3)$
O3	$0.0204(4)$	$0.0174(4)$	$0.0163(4)$	$-0.0029(3)$	$0.0059(3)$	$0.0013(3)$
O4	$0.0262(4)$	$0.0233(4)$	$0.0172(4)$	$-0.0041(3)$	$0.0043(3)$	$-0.0009(3)$
C1	$0.0218(6)$	$0.0257(6)$	$0.0163(5)$	$-0.0040(4)$	$0.0032(4)$	$0.0019(4)$
C2	$0.0191(5)$	$0.0141(5)$	$0.0173(5)$	$-0.0015(4)$	$0.0061(4)$	$0.0007(4)$
C3	$0.0189(5)$	$0.0184(5)$	$0.0197(5)$	$0.0003(4)$	$0.0069(4)$	$-0.0021(4)$
C4	$0.0182(5)$	$0.0211(5)$	$0.0223(5)$	$-0.0024(4)$	$0.0054(4)$	$-0.0022(4)$
C5	$0.0219(5)$	$0.0185(5)$	$0.0163(5)$	$-0.0031(4)$	$0.0065(4)$	$0.0011(4)$
C6	$0.0229(6)$	$0.0160(5)$	$0.0170(5)$	$0.0022(4)$	$0.0064(4)$	$0.0004(4)$
C7	$0.0293(6)$	$0.0226(6)$	$0.0207(5)$	$-0.0026(5)$	$0.0099(5)$	$0.0023(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C5	1.3660 (14)	C3-C4	1.5253 (15)
$\mathrm{O} 1-\mathrm{C} 2$	1.4373 (13)	C3-H3A	0.9900
O2-C5	1.2000 (15)	C3-H3B	0.9900
O3-C6	1.3546 (14)	C4-C5	1.5025 (16)
O3-C2	1.4443 (13)	C4-H4A	0.9900
O4-C6	1.2063 (15)	C4-H4B	0.9900
$\mathrm{C} 1-\mathrm{C} 2$	1.5049 (15)	C6-C7	1.4972 (15)
C1-H1A	0.9800	C7-H7A	0.9800
C1-H1B	0.9800	C7-H7B	0.9800
C1-H1C	0.9800	C7-H7C	0.9800
C2-C3	1.5424 (15)		
C5-O1-C2	111.57 (8)	H3A-C3-H3B	108.8
C6-O3-C2	119.86 (8)	C5-C4-C3	105.24 (9)
C2-C1-H1A	109.5	C5-C4-H4A	110.7
C2-C1-H1B	109.5	C3-C4-H4A	110.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C5-C4-H4B	110.7
C2- ${ }^{\text {1 }}$ - H 1 C	109.5	C3-C4-H4B	110.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.8
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1$	120.27 (11)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 3$	107.02 (8)	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	129.16 (11)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	109.32 (9)	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	110.56 (9)
O3-C2-C1	104.52 (9)	O4-C6-O3	123.78 (10)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	106.79 (8)	O4-C6-C7	125.25 (10)
O3-C2-C3	114.29 (9)	O3-C6-C7	110.90 (10)
C1-C2-C3	114.62 (9)	C6-C7-H7A	109.5

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$104.93(9)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.8	$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.8	$\mathrm{C} 6-\mathrm{C}-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.8	$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.8	$\mathrm{H} 7 \mathrm{~B}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 3$	$-112.79(9)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-128.27(10)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$134.56(9)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$2.08(11)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$10.02(11)$	$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 5-\mathrm{O} 2$	$172.31(10)$
$\mathrm{C} 6-\mathrm{O} 3-\mathrm{C} 2-\mathrm{O} 1$	$62.87(11)$	$\mathrm{C} 2-\mathrm{O}-\mathrm{C} 5-\mathrm{C} 4$	$-8.92(12)$
$\mathrm{C} 6-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	$178.76(9)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	$-177.45(11)$
$\mathrm{C} 6-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3$	$-55.15(12)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 1$	$3.91(12)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 6-\mathrm{O} 4$	$0.50(16)$	
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 7$	$-176.52(9)$	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.99	2.68	$3.5827(13)$	152
$\mathrm{C} 1 — \mathrm{H} 1 B \cdots 3^{\mathrm{ii}}$	0.98	2.63	$3.4617(14)$	142

Symmetry codes: (i) $-x, y+1 / 2,-z+1 / 2$; (ii) $-x+1,-y+1,-z+1$.

