organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o994-o995

2-(4-Methyl­pyridin-2-yl)-4′,4′,6′,6′-tetra­kis­(pyrrolidin-1-yl)-1H,2H-spiro­[naphtho­[1,2-e][1,3,2]oxaza­phosphinine-3,2′-[1,3,5,2,4,6]tri­aza­triphosphinine]

aDepartment of Chemistry, Kırıkkale University, 71450 Kırıkkale, Turkey, and bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 16 May 2013; accepted 22 May 2013; online 31 May 2013)

In the title spiro-phosphazene derivative, C33H46N9OP3, the phosphazene and six-membered N/O rings are in flattened chair and twisted-boat conformations, respectively. The naphthalene ring system and the pyridine ring are oriented at a dihedral angle of 41.82 (4)°. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules related by translation along the a axis into chains. C—H⋯π inter­actions aggregate these chains into layers parallel to the ab plane.

Related literature

For N/O-donor-type bifunctional reagents used for the reaction of hexa­chloro­cyclo­triphosphazene giving spiro derivatives, see: Beşli et al. (2007[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A. & Shaw, R. A. (2007). Dalton Trans. pp. 2792-2801.]); Işıklan et al. (2010[Işıklan, M., Asmafiliz, N., Özalp, E. E., İlter, E. E., Kılıç, Z., Coşut, B., Yeşilot, S., Kılıç, A., Öztürk, A., Hökelek, T., Koç, L. Y., Açık, L. & Akyüz, E. (2010). Inorg. Chem. 49, 7057-7071.], 2013[Işıklan, M., Sonkaya, Ö. & Hökelek, T. (2013). Acta Cryst. E69, o861-o862.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the standard compound, N3P3Cl6, see: Bullen (1971[Bullen, G. J. (1971). J. Chem. Soc. A, pp. 1450-1453.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C33H46N9OP3

  • Mr = 677.70

  • Triclinic, [P \overline 1]

  • a = 9.5830 (2) Å

  • b = 10.9142 (2) Å

  • c = 16.8172 (3) Å

  • α = 79.210 (2)°

  • β = 84.542 (3)°

  • γ = 74.193 (2)°

  • V = 1660.68 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.31 × 0.26 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.947

  • 30003 measured reflections

  • 8270 independent reflections

  • 6876 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.04

  • 8270 reflections

  • 416 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O1i 0.96 2.47 3.372 (2) 156
C24—H24BCg1ii 0.97 2.74 3.624 (2) 152
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on the reaction of hexachlorocyclotriphosphazene, N3P3Cl6, with N/O donor type bifunctional reagents such as aminoalcohols (Beşli et al., 2007), aminophenols (Işıklan et al., 2010) and aminonaphthols (Işıklan et al., 2013), the title compound was synthesized and its crystal structure is reported herein.

In the title compound (Fig. 1), the phosphazene ring (A) is in flattened-chair conformation [ϕ = -12.9(1.3)° and θ = 17.5 (3)°] having total puckering amplitude QT of 0.181 (1) Å (Cremer & Pople, 1975). Atoms N1, N2 and N3 are displaced from the plane through the P atoms by 0.160 (1), 0.081 (1) and 0.184 (1) Å, respectively. As expected, the naphthalene bicycle and the pyridine ring are planar, and they are oriented at a dihedral angle of 41.82 (4)°. Ring B (P1/O1/C9—C11/N4) is in twisted-boat conformation [ϕ = 43.3 (9)° and θ = 31.5 (1)°] having total puckering amplitude QT of 0.658 (4) Å.

The pyrrolidine rings, F (N6/C18—C21), G (N7/C22—C25), H (N8/C26—C29) and I (N9/C30—C33), adopt envelope conformations with atoms C18, C23, C27 and N9 displaced by -0.488 (2), 0.563 (2), -0.606 (2) and -0.557 (1) Å from the planes of the other rings atoms, respectively.

In the phosphazene ring, the P—N bond lengths are in the range of 1.5732 (13)–1.6164 (13) Å [average value is 1.5954 (13) Å], exhibiting a regular variation with distances from P1: P1—N1 P1—N3 P2—N2 P3—N2 P2—N1 P3—N3, and showing double-bond character. However, the exocyclic P1—N4 bond [1.6804 (13) Å] is at the lower limit of the single bond length. In the phosphazene compounds, the P—N and PN bonds are generally in the ranges of 1.628–1.691 and 1.571–1.604 Å, respectively (Allen et al., 1987). The shortening in the P1—N4 bond is probably due to electron transfer from N4 to the phosphazene ring. On the other hand, the exocyclic P2—N6 [1.6483 (14) Å], P2—N7 [1.6430 (14) Å], P3—N8 [1.6372 (14) Å] and P3—N9 [1.6644 (13) Å] bonds are also at the lower limit of the single bond length.

In the phosphazene ring, the endocyclic N1—P1—N3 angle [118.29 (7)°] is not changed, and the exocyclic O1—P1—N4 angle [99.48 (6)°] is decreased, while the endocyclic N1—P2—N2 [116.01 (7)°] and N2—P3—N3 [115.10 (7)°] angles are decreased with electron donation and withdrawal by the substituents, relative to the 'standard compound' N3P3Cl6 (Bullen, 1971). In the latter compound, the corresponding angles are 118.3, 118.5, 101.2 and 101.6 °, respectively.

The P1—N1—P2, P2—N2—P3 and P1—N3—P3 angles are 120.66 (8), 123.76 (8) and 121.24 (8) °, respectively; P1—N1—P2 is decreased, while P2—N2—P3 is increased with electron donation and withdrawal by the N3P3 ring. They can be compared with the average value reported for N3P3Cl6, viz. 121.4 (3)°.

In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules related by translation along the a axis into chains (Fig. 2), and C—H···π interactions (Table 1) aggregate these chains into layers parallel to ab plane.

Related literature top

For N/O-donor-type bifunctional reagents used for the reaction of hexachlorocyclotriphosphazene giving spiro derivatives, see: Beşli et al. (2007); Işıklan et al. (2010, 2013). For bond-length data, see: Allen et al. (1987). For the standard compound, N3P3Cl6, see: Bullen (1971). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

In a 250 ml three-necked round-bottomed flask, 4',4',6',6'-tetrachloro-2-(4 -methylpyridin-2-yl)-1H,2H-spiro[naphtho[1,2-e][1,3,2] oxazaphosphinine-3,2'-[1,3,5,2,4,6]triazatriphosphinine] (1.00 g, 1.86 mmol) was dissolved in dry toluene (100 ml). Six equivalents of pyrrolidine (0.93 ml, 11.20 mmol) and triethylamine (5 ml, 36.00 mmol) were added to the solution. The reaction mixture was refluxed for 12 h. The progress of the reaction was monitored by TLC. The precipitated triethylamine hydrochloride was filtered off. The solvent was evaporated and the product was purified through a silica gel column with a mobile phase of toluene/THF (1:1). The oily product was recrystallized in acetonitrile [m.p. 460 K, yield: 1.16 g, 92%].

Refinement top

H atoms were positioned geometrically with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen bonds as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
2-(4-Methylpyridin-2-yl)-4',4',6',6'-tetrakis(pyrrolidin-1-yl)-1H,2H-spiro[naphtho[1,2-e][1,3,2]oxazaphosphinine-3,2'-[1,3,5,2,4,6]triazatriphosphinine] top
Crystal data top
C33H46N9OP3Z = 2
Mr = 677.70F(000) = 720
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5830 (2) ÅCell parameters from 9939 reflections
b = 10.9142 (2) Åθ = 2.2–28.3°
c = 16.8172 (3) ŵ = 0.22 mm1
α = 79.210 (2)°T = 100 K
β = 84.542 (3)°Block, colourless
γ = 74.193 (2)°0.31 × 0.26 × 0.25 mm
V = 1660.68 (6) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
8270 independent reflections
Radiation source: fine-focus sealed tube6876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 28.4°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.934, Tmax = 0.947k = 1414
30003 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.8708P]
where P = (Fo2 + 2Fc2)/3
8270 reflections(Δ/σ)max = 0.001
416 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C33H46N9OP3γ = 74.193 (2)°
Mr = 677.70V = 1660.68 (6) Å3
Triclinic, P1Z = 2
a = 9.5830 (2) ÅMo Kα radiation
b = 10.9142 (2) ŵ = 0.22 mm1
c = 16.8172 (3) ÅT = 100 K
α = 79.210 (2)°0.31 × 0.26 × 0.25 mm
β = 84.542 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
8270 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6876 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.947Rint = 0.030
30003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.89 e Å3
8270 reflectionsΔρmin = 0.37 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.41615 (4)0.65219 (4)0.26913 (2)0.01269 (9)
P20.42634 (4)0.90846 (4)0.24147 (2)0.01288 (9)
P30.36895 (4)0.78543 (4)0.39892 (2)0.01263 (9)
O10.26440 (11)0.63318 (11)0.24585 (7)0.0168 (2)
N10.45484 (14)0.77140 (12)0.21130 (8)0.0147 (3)
N20.40058 (14)0.90563 (12)0.33662 (8)0.0156 (3)
N30.40214 (14)0.65238 (12)0.36308 (8)0.0147 (3)
N40.52927 (14)0.51427 (12)0.24700 (8)0.0140 (3)
N50.74070 (15)0.34880 (13)0.26606 (8)0.0171 (3)
N60.56147 (14)0.97631 (13)0.21432 (8)0.0165 (3)
N70.29558 (15)1.00713 (12)0.18643 (8)0.0174 (3)
N80.45650 (14)0.74826 (12)0.48273 (8)0.0156 (3)
N90.19774 (14)0.83237 (12)0.43381 (8)0.0148 (3)
C10.34522 (17)0.45778 (15)0.07336 (9)0.0153 (3)
C20.44802 (18)0.35388 (15)0.04381 (10)0.0179 (3)
H20.52980.31000.07300.021*
C30.42865 (19)0.31713 (16)0.02734 (10)0.0211 (3)
H30.49710.24870.04570.025*
C40.3060 (2)0.38236 (17)0.07261 (10)0.0234 (4)
H40.29310.35640.12040.028*
C50.2061 (2)0.48350 (16)0.04650 (10)0.0230 (4)
H50.12610.52670.07730.028*
C60.22176 (18)0.52431 (15)0.02693 (10)0.0185 (3)
C70.11652 (19)0.62697 (16)0.05555 (11)0.0229 (4)
H70.03550.66980.02550.027*
C80.13190 (18)0.66438 (16)0.12675 (11)0.0216 (3)
H80.06270.73240.14510.026*
C90.25415 (17)0.59798 (15)0.17156 (10)0.0163 (3)
C100.35985 (16)0.49761 (14)0.14797 (9)0.0146 (3)
C110.48332 (17)0.42860 (15)0.20221 (10)0.0170 (3)
H11A0.45440.36110.24090.020*
H11B0.56560.38760.16960.020*
C120.67301 (16)0.47150 (14)0.27157 (9)0.0139 (3)
C130.74130 (17)0.55364 (15)0.29904 (10)0.0165 (3)
H130.69030.63800.30350.020*
C140.88477 (17)0.50805 (16)0.31940 (10)0.0182 (3)
C150.95706 (18)0.38142 (16)0.31073 (10)0.0205 (3)
H151.05470.34800.32190.025*
C160.88029 (18)0.30691 (16)0.28526 (10)0.0203 (3)
H160.92870.22190.28110.024*
C170.96028 (19)0.59051 (18)0.35269 (12)0.0263 (4)
H17A1.05820.57700.33030.039*
H17B0.96130.56730.41060.039*
H17C0.90950.67980.33830.039*
C180.68198 (18)0.95919 (17)0.26621 (11)0.0225 (4)
H18A0.73590.86920.27800.027*
H18B0.64780.99060.31670.027*
C190.7737 (2)1.0406 (2)0.21450 (13)0.0341 (5)
H19A0.73621.13100.21940.041*
H19B0.87381.01150.23010.041*
C200.7616 (2)1.0203 (2)0.12923 (13)0.0352 (5)
H20A0.83780.94700.11610.042*
H20B0.76881.09640.09040.042*
C210.61243 (19)0.99544 (17)0.12823 (10)0.0218 (3)
H21A0.54651.06870.09720.026*
H21B0.61990.91910.10470.026*
C220.20688 (19)0.97192 (16)0.13292 (11)0.0218 (3)
H22A0.12340.94830.16240.026*
H22B0.26300.90080.10680.026*
C230.1608 (2)1.09529 (17)0.07164 (11)0.0276 (4)
H23A0.07261.09870.04640.033*
H23B0.23661.10240.02980.033*
C240.13567 (19)1.20106 (16)0.12308 (11)0.0227 (4)
H24A0.03791.21850.14740.027*
H24B0.15061.28020.09060.027*
C250.24817 (18)1.14693 (15)0.18844 (10)0.0191 (3)
H25A0.32931.18560.17610.023*
H25B0.20491.16310.24130.023*
C260.60087 (18)0.65564 (17)0.49101 (10)0.0212 (3)
H26A0.67080.68250.45070.025*
H26B0.59660.56960.48610.025*
C270.63870 (18)0.66012 (15)0.57564 (10)0.0202 (3)
H27A0.74290.63260.58150.024*
H27B0.59270.60610.61620.024*
C280.57847 (19)0.80239 (16)0.58221 (11)0.0236 (4)
H28A0.64300.85310.55450.028*
H28B0.56360.81440.63840.028*
C290.43433 (18)0.83939 (16)0.54080 (10)0.0190 (3)
H29A0.35540.82930.57990.023*
H29B0.41300.92810.51270.023*
C300.13884 (17)0.73570 (16)0.49065 (10)0.0196 (3)
H30A0.18600.71330.54190.023*
H30B0.15120.65780.46790.023*
C310.02248 (18)0.80459 (18)0.50156 (11)0.0239 (4)
H31A0.04030.84310.55030.029*
H31B0.08180.74440.50530.029*
C320.05706 (18)0.90933 (18)0.42606 (11)0.0235 (4)
H32A0.13180.89570.39620.028*
H32B0.09030.99440.44120.028*
C330.08559 (17)0.89666 (16)0.37477 (10)0.0196 (3)
H33A0.08930.84480.33330.024*
H33B0.09720.98080.34910.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01320 (18)0.01268 (18)0.01255 (19)0.00217 (14)0.00114 (14)0.00448 (14)
P20.01397 (19)0.01263 (18)0.01200 (19)0.00272 (14)0.00155 (14)0.00256 (14)
P30.01362 (18)0.01335 (18)0.01120 (19)0.00266 (14)0.00087 (14)0.00389 (14)
O10.0142 (5)0.0201 (6)0.0184 (6)0.0037 (4)0.0011 (4)0.0098 (5)
N10.0180 (6)0.0132 (6)0.0123 (6)0.0015 (5)0.0009 (5)0.0040 (5)
N20.0210 (7)0.0139 (6)0.0131 (6)0.0055 (5)0.0005 (5)0.0037 (5)
N30.0188 (6)0.0135 (6)0.0120 (6)0.0037 (5)0.0009 (5)0.0033 (5)
N40.0147 (6)0.0130 (6)0.0153 (6)0.0022 (5)0.0023 (5)0.0058 (5)
N50.0189 (7)0.0166 (6)0.0150 (7)0.0013 (5)0.0030 (5)0.0041 (5)
N60.0165 (6)0.0201 (7)0.0134 (7)0.0064 (5)0.0025 (5)0.0008 (5)
N70.0195 (7)0.0136 (6)0.0194 (7)0.0018 (5)0.0070 (5)0.0041 (5)
N80.0150 (6)0.0164 (6)0.0146 (7)0.0001 (5)0.0028 (5)0.0063 (5)
N90.0125 (6)0.0178 (6)0.0138 (6)0.0026 (5)0.0016 (5)0.0037 (5)
C10.0189 (7)0.0153 (7)0.0137 (7)0.0079 (6)0.0012 (6)0.0019 (6)
C20.0208 (8)0.0198 (8)0.0148 (8)0.0078 (6)0.0006 (6)0.0039 (6)
C30.0281 (9)0.0221 (8)0.0162 (8)0.0103 (7)0.0025 (7)0.0069 (6)
C40.0371 (10)0.0261 (9)0.0118 (8)0.0157 (8)0.0021 (7)0.0031 (6)
C50.0319 (9)0.0228 (8)0.0168 (8)0.0123 (7)0.0103 (7)0.0025 (6)
C60.0238 (8)0.0163 (7)0.0173 (8)0.0083 (6)0.0061 (6)0.0003 (6)
C70.0234 (8)0.0187 (8)0.0270 (9)0.0035 (7)0.0127 (7)0.0022 (7)
C80.0189 (8)0.0165 (8)0.0294 (9)0.0007 (6)0.0063 (7)0.0072 (7)
C90.0170 (7)0.0172 (7)0.0171 (8)0.0062 (6)0.0029 (6)0.0054 (6)
C100.0162 (7)0.0147 (7)0.0145 (8)0.0058 (6)0.0023 (6)0.0031 (6)
C110.0198 (8)0.0145 (7)0.0182 (8)0.0025 (6)0.0053 (6)0.0072 (6)
C120.0148 (7)0.0158 (7)0.0101 (7)0.0024 (6)0.0002 (6)0.0023 (6)
C130.0169 (7)0.0157 (7)0.0168 (8)0.0025 (6)0.0003 (6)0.0051 (6)
C140.0165 (7)0.0231 (8)0.0154 (8)0.0051 (6)0.0009 (6)0.0046 (6)
C150.0154 (7)0.0247 (8)0.0195 (8)0.0003 (6)0.0036 (6)0.0052 (7)
C160.0200 (8)0.0175 (8)0.0203 (8)0.0023 (6)0.0031 (6)0.0053 (6)
C170.0183 (8)0.0290 (9)0.0349 (10)0.0065 (7)0.0049 (7)0.0111 (8)
C180.0196 (8)0.0254 (9)0.0240 (9)0.0067 (7)0.0065 (7)0.0039 (7)
C190.0261 (10)0.0422 (11)0.0402 (12)0.0167 (9)0.0005 (8)0.0114 (9)
C200.0250 (10)0.0495 (13)0.0313 (11)0.0156 (9)0.0047 (8)0.0021 (9)
C210.0243 (8)0.0238 (8)0.0178 (8)0.0090 (7)0.0037 (7)0.0029 (6)
C220.0221 (8)0.0183 (8)0.0260 (9)0.0033 (6)0.0105 (7)0.0047 (7)
C230.0331 (10)0.0263 (9)0.0220 (9)0.0028 (8)0.0094 (8)0.0034 (7)
C240.0258 (9)0.0170 (8)0.0221 (9)0.0001 (6)0.0063 (7)0.0011 (6)
C250.0217 (8)0.0138 (7)0.0202 (8)0.0009 (6)0.0039 (6)0.0031 (6)
C260.0175 (8)0.0236 (8)0.0192 (8)0.0026 (6)0.0046 (6)0.0052 (7)
C270.0217 (8)0.0179 (8)0.0207 (8)0.0044 (6)0.0079 (7)0.0002 (6)
C280.0277 (9)0.0209 (8)0.0246 (9)0.0068 (7)0.0122 (7)0.0038 (7)
C290.0225 (8)0.0188 (8)0.0166 (8)0.0033 (6)0.0033 (6)0.0069 (6)
C300.0171 (8)0.0234 (8)0.0184 (8)0.0068 (6)0.0002 (6)0.0025 (6)
C310.0179 (8)0.0311 (9)0.0248 (9)0.0079 (7)0.0033 (7)0.0095 (7)
C320.0154 (8)0.0302 (9)0.0253 (9)0.0026 (7)0.0041 (7)0.0092 (7)
C330.0171 (8)0.0226 (8)0.0178 (8)0.0007 (6)0.0043 (6)0.0050 (6)
Geometric parameters (Å, º) top
P1—O11.6168 (11)C15—C161.379 (2)
P1—N11.5801 (13)C15—H150.9300
P1—N31.5732 (13)C16—H160.9300
P1—N41.6804 (13)C17—H17A0.9600
P2—N11.6140 (13)C17—H17B0.9600
P2—N21.5914 (13)C17—H17C0.9600
P2—N61.6483 (14)C18—C191.519 (3)
P2—N71.6430 (14)C18—H18A0.9700
P3—N21.5975 (13)C18—H18B0.9700
P3—N31.6164 (13)C19—H19A0.9700
P3—N81.6372 (14)C19—H19B0.9700
P3—N91.6644 (13)C20—C191.511 (3)
O1—C91.3934 (18)C20—H20A0.9700
N4—C111.4787 (19)C20—H20B0.9700
N4—C121.4043 (19)C21—C201.528 (2)
N5—C121.3359 (19)C21—H21A0.9700
N5—C161.340 (2)C21—H21B0.9700
N6—C181.464 (2)C22—C231.521 (2)
N6—C211.479 (2)C22—H22A0.9700
N7—C221.460 (2)C22—H22B0.9700
N7—C251.4746 (19)C23—C241.524 (2)
N8—C261.476 (2)C23—H23A0.9700
N8—C291.4823 (19)C23—H23B0.9700
N9—C301.480 (2)C24—H24A0.9700
N9—C331.471 (2)C24—H24B0.9700
C1—C21.419 (2)C25—C241.535 (2)
C1—C61.426 (2)C25—H25A0.9700
C1—C101.433 (2)C25—H25B0.9700
C2—C31.375 (2)C26—C271.514 (2)
C2—H20.9300C26—H26A0.9700
C3—C41.407 (3)C26—H26B0.9700
C3—H30.9300C27—C281.523 (2)
C4—C51.361 (3)C27—H27A0.9700
C4—H40.9300C27—H27B0.9700
C5—H50.9300C28—H28A0.9700
C6—C51.422 (2)C28—H28B0.9700
C6—C71.414 (2)C29—C281.526 (2)
C7—C81.368 (2)C29—H29A0.9700
C7—H70.9300C29—H29B0.9700
C8—H80.9300C30—C311.534 (2)
C9—C81.402 (2)C30—H30A0.9700
C9—C101.366 (2)C30—H30B0.9700
C10—C111.504 (2)C31—H31A0.9700
C11—H11A0.9700C31—H31B0.9700
C11—H11B0.9700C32—C311.536 (3)
C13—C121.406 (2)C32—C331.533 (2)
C13—C141.381 (2)C32—H32A0.9700
C13—H130.9300C32—H32B0.9700
C14—C171.506 (2)C33—H33A0.9700
C15—C141.395 (2)C33—H33B0.9700
N1—P1—O1110.67 (7)N6—C18—H18A111.3
N3—P1—O1105.79 (6)N6—C18—H18B111.3
N3—P1—N1118.29 (7)C19—C18—H18A111.3
O1—P1—N499.48 (6)C19—C18—H18B111.3
N1—P1—N4109.64 (7)H18A—C18—H18B109.2
N3—P1—N4111.27 (7)C18—C19—H19A111.0
N1—P2—N6112.35 (7)C18—C19—H19B111.0
N1—P2—N7105.29 (7)C20—C19—C18103.98 (15)
N2—P2—N1116.01 (7)C20—C19—H19A111.0
N2—P2—N6105.52 (7)C20—C19—H19B111.0
N2—P2—N7115.07 (7)H19A—C19—H19B109.0
N7—P2—N6101.83 (7)C19—C20—C21105.42 (15)
N2—P3—N3115.10 (7)C19—C20—H20A110.7
N2—P3—N8115.01 (7)C19—C20—H20B110.7
N2—P3—N9106.61 (7)C21—C20—H20A110.7
N3—P3—N8105.41 (7)C21—C20—H20B110.7
N3—P3—N9112.55 (7)H20A—C20—H20B108.8
N8—P3—N9101.46 (7)N6—C21—C20104.84 (14)
C9—O1—P1119.89 (9)N6—C21—H21A110.8
P1—N1—P2120.66 (8)N6—C21—H21B110.8
P2—N2—P3123.76 (8)C20—C21—H21A110.8
P1—N3—P3121.24 (8)C20—C21—H21B110.8
C11—N4—P1122.37 (10)H21A—C21—H21B108.9
C12—N4—P1121.97 (10)N7—C22—C23102.68 (13)
C12—N4—C11115.65 (12)N7—C22—H22A111.2
C12—N5—C16117.13 (14)N7—C22—H22B111.2
C18—N6—P2123.16 (11)C23—C22—H22A111.2
C18—N6—C21109.75 (13)C23—C22—H22B111.2
C21—N6—P2119.56 (11)H22A—C22—H22B109.1
C22—N7—P2126.69 (11)C22—C23—C24103.09 (14)
C22—N7—C25110.66 (13)C22—C23—H23A111.1
C25—N7—P2122.60 (11)C22—C23—H23B111.1
C26—N8—P3122.62 (11)C24—C23—H23A111.1
C26—N8—C29110.42 (12)C24—C23—H23B111.1
C29—N8—P3121.92 (10)H23A—C23—H23B109.1
C30—N9—P3117.42 (10)C23—C24—C25104.67 (13)
C33—N9—P3118.11 (10)C23—C24—H24A110.8
C33—N9—C30106.12 (12)C23—C24—H24B110.8
C2—C1—C6118.33 (14)C25—C24—H24A110.8
C2—C1—C10122.78 (14)C25—C24—H24B110.8
C6—C1—C10118.89 (14)H24A—C24—H24B108.9
C1—C2—H2119.5N7—C25—C24104.50 (13)
C3—C2—C1120.99 (15)N7—C25—H25A110.9
C3—C2—H2119.5N7—C25—H25B110.9
C2—C3—C4120.48 (16)C24—C25—H25A110.9
C2—C3—H3119.8C24—C25—H25B110.9
C4—C3—H3119.8H25A—C25—H25B108.9
C5—C4—C3120.04 (15)N8—C26—C27102.75 (13)
C5—C4—H4120.0N8—C26—H26A111.2
C3—C4—H4120.0N8—C26—H26B111.2
C4—C5—C6121.26 (16)C27—C26—H26A111.2
C4—C5—H5119.4C27—C26—H26B111.2
C6—C5—H5119.4H26A—C26—H26B109.1
C7—C6—C1119.51 (15)C26—C27—C28102.77 (13)
C7—C6—C5121.58 (15)C26—C27—H27A111.2
C5—C6—C1118.89 (15)C26—C27—H27B111.2
C6—C7—H7119.5C28—C27—H27A111.2
C8—C7—C6121.07 (15)C28—C27—H27B111.2
C8—C7—H7119.5H27A—C27—H27B109.1
C7—C8—C9118.64 (15)C27—C28—C29103.16 (13)
C7—C8—H8120.7C27—C28—H28A111.1
C9—C8—H8120.7C27—C28—H28B111.1
O1—C9—C8117.84 (14)C29—C28—H28A111.1
C10—C9—O1118.51 (14)C29—C28—H28B111.1
C10—C9—C8123.59 (15)H28A—C28—H28B109.1
C1—C10—C11122.09 (13)N8—C29—C28104.14 (13)
C9—C10—C1118.30 (14)N8—C29—H29A110.9
C9—C10—C11119.55 (14)N8—C29—H29B110.9
N4—C11—C10113.62 (12)C28—C29—H29A110.9
N4—C11—H11A108.8C28—C29—H29B110.9
N4—C11—H11B108.8H29A—C29—H29B108.9
C10—C11—H11A108.8N9—C30—C31103.53 (13)
C10—C11—H11B108.8N9—C30—H30A111.1
H11A—C11—H11B107.7N9—C30—H30B111.1
N4—C12—C13121.86 (13)C31—C30—H30A111.1
N5—C12—N4115.69 (13)C31—C30—H30B111.1
N5—C12—C13122.45 (14)H30A—C30—H30B109.0
C12—C13—H13120.3C30—C31—C32105.54 (14)
C14—C13—C12119.45 (14)C30—C31—H31A110.6
C14—C13—H13120.3C30—C31—H31B110.6
C13—C14—C15118.09 (15)C32—C31—H31A110.6
C13—C14—C17121.28 (15)C32—C31—H31B110.6
C15—C14—C17120.60 (15)H31A—C31—H31B108.8
C14—C15—H15120.8C31—C32—H32A110.6
C16—C15—C14118.41 (15)C31—C32—H32B110.6
C16—C15—H15120.8C33—C32—C31105.59 (13)
N5—C16—C15124.42 (15)C33—C32—H32A110.6
N5—C16—H16117.8C33—C32—H32B110.6
C15—C16—H16117.8H32A—C32—H32B108.8
C14—C17—H17A109.5N9—C33—C32103.77 (13)
C14—C17—H17B109.5N9—C33—H33A111.0
C14—C17—H17C109.5N9—C33—H33B111.0
H17A—C17—H17B109.5C32—C33—H33A111.0
H17A—C17—H17C109.5C32—C33—H33B111.0
H17B—C17—H17C109.5H33A—C33—H33B109.0
N6—C18—C19102.41 (14)
N1—P1—O1—C966.13 (12)P2—N6—C18—C19179.54 (12)
N3—P1—O1—C9164.59 (11)C21—N6—C18—C1931.07 (17)
N4—P1—O1—C949.16 (12)P2—N6—C21—C20163.38 (12)
O1—P1—N1—P2101.22 (9)C18—N6—C21—C2012.73 (18)
N3—P1—N1—P221.01 (13)P2—N7—C22—C23154.25 (13)
N4—P1—N1—P2150.02 (9)C25—N7—C22—C2328.39 (18)
O1—P1—N3—P3102.47 (9)P2—N7—C25—C24175.08 (12)
N1—P1—N3—P322.19 (13)C22—N7—C25—C247.43 (18)
N4—P1—N3—P3150.44 (8)P3—N8—C26—C27176.80 (11)
O1—P1—N4—C1111.22 (13)C29—N8—C26—C2721.54 (17)
O1—P1—N4—C12167.31 (12)P3—N8—C29—C28152.11 (12)
N1—P1—N4—C11104.85 (13)C26—N8—C29—C283.36 (17)
N1—P1—N4—C1276.62 (13)P3—N9—C30—C31173.12 (11)
N3—P1—N4—C11122.38 (12)C33—N9—C30—C3138.50 (16)
N3—P1—N4—C1256.14 (14)P3—N9—C33—C32172.79 (11)
N2—P2—N1—P116.28 (12)C30—N9—C33—C3238.53 (16)
N6—P2—N1—P1137.78 (9)C6—C1—C2—C30.7 (2)
N7—P2—N1—P1112.21 (10)C10—C1—C2—C3178.79 (15)
N1—P2—N2—P313.23 (13)C2—C1—C6—C50.5 (2)
N6—P2—N2—P3138.30 (10)C2—C1—C6—C7179.07 (15)
N7—P2—N2—P3110.29 (10)C10—C1—C6—C5179.04 (14)
N1—P2—N6—C1893.15 (14)C10—C1—C6—C70.4 (2)
N1—P2—N6—C2153.41 (14)C2—C1—C10—C9179.34 (14)
N2—P2—N6—C1834.17 (14)C2—C1—C10—C112.3 (2)
N2—P2—N6—C21179.27 (12)C6—C1—C10—C90.1 (2)
N7—P2—N6—C18154.67 (13)C6—C1—C10—C11177.20 (14)
N7—P2—N6—C2158.77 (13)C1—C2—C3—C40.1 (2)
N1—P2—N7—C2210.18 (16)C2—C3—C4—C50.7 (2)
N1—P2—N7—C25172.75 (13)C3—C4—C5—C60.9 (3)
N2—P2—N7—C22118.86 (14)C1—C6—C5—C40.3 (2)
N2—P2—N7—C2558.22 (15)C7—C6—C5—C4178.25 (16)
N6—P2—N7—C22127.58 (14)C1—C6—C7—C80.6 (2)
N6—P2—N7—C2555.35 (14)C5—C6—C7—C8179.21 (16)
N3—P3—N2—P214.06 (13)C6—C7—C8—C90.5 (3)
N8—P3—N2—P2136.91 (9)O1—C9—C8—C7176.89 (15)
N9—P3—N2—P2111.50 (10)C10—C9—C8—C70.2 (3)
N2—P3—N3—P118.27 (12)O1—C9—C10—C1177.07 (13)
N8—P3—N3—P1146.11 (9)O1—C9—C10—C110.1 (2)
N9—P3—N3—P1104.15 (10)C8—C9—C10—C10.0 (2)
N2—P3—N8—C2690.19 (14)C8—C9—C10—C11177.17 (15)
N2—P3—N8—C2962.30 (14)C1—C10—C11—N4147.90 (14)
N3—P3—N8—C2637.71 (14)C9—C10—C11—N435.1 (2)
N3—P3—N8—C29169.80 (12)C14—C13—C12—N4177.42 (14)
N9—P3—N8—C26155.21 (13)C14—C13—C12—N51.6 (2)
N9—P3—N8—C2952.31 (13)C12—C13—C14—C150.8 (2)
N2—P3—N9—C30177.45 (11)C12—C13—C14—C17177.17 (15)
N2—P3—N9—C3348.27 (13)C16—C15—C14—C132.4 (2)
N3—P3—N9—C3050.35 (13)C16—C15—C14—C17175.60 (16)
N3—P3—N9—C3378.82 (13)C14—C15—C16—N51.8 (3)
N8—P3—N9—C3061.84 (12)N6—C18—C19—C2036.92 (19)
N8—P3—N9—C33168.98 (11)C21—C20—C19—C1829.8 (2)
P1—O1—C9—C8134.76 (13)N6—C21—C20—C1911.1 (2)
P1—O1—C9—C1047.98 (18)N7—C22—C23—C2437.58 (18)
P1—N4—C11—C1025.90 (18)C22—C23—C24—C2533.58 (18)
C12—N4—C11—C10155.48 (13)N7—C25—C24—C2316.68 (18)
P1—N4—C12—N5165.83 (11)N8—C26—C27—C2837.69 (16)
P1—N4—C12—C1315.1 (2)C26—C27—C28—C2940.19 (17)
C11—N4—C12—N512.79 (19)N8—C29—C28—C2726.81 (17)
C11—N4—C12—C13166.32 (14)N9—C30—C31—C3222.81 (17)
C16—N5—C12—N4176.79 (14)C33—C32—C31—C300.03 (18)
C16—N5—C12—C132.3 (2)C31—C32—C33—N922.92 (17)
C12—N5—C16—C150.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.962.473.372 (2)156
C24—H24B···Cg1ii0.972.743.624 (2)152
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC33H46N9OP3
Mr677.70
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5830 (2), 10.9142 (2), 16.8172 (3)
α, β, γ (°)79.210 (2), 84.542 (3), 74.193 (2)
V3)1660.68 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.31 × 0.26 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.934, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
30003, 8270, 6876
Rint0.030
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.04
No. of reflections8270
No. of parameters416
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.37

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···O1i0.962.473.372 (2)156
C24—H24B···Cg1ii0.972.743.624 (2)152
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. The authors gratefully acknowledge the Kırıkkale University Scientific Research Projects Coordination Unit (grant No. 2009/42), the Scientific and Technical Research Council of Turkey, TÜBİTAK (grant No. 106 T503) and the Hacettepe University Scientific Research Unit (grant No. 02 02 602 002) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBeşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., Kılıç, A. & Shaw, R. A. (2007). Dalton Trans. pp. 2792–2801.
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBullen, G. J. (1971). J. Chem. Soc. A, pp. 1450–1453.  CSD CrossRef
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationIşıklan, M., Asmafiliz, N., Özalp, E. E., İlter, E. E., Kılıç, Z., Coşut, B., Yeşilot, S., Kılıç, A., Öztürk, A., Hökelek, T., Koç, L. Y., Açık, L. & Akyüz, E. (2010). Inorg. Chem. 49, 7057–7071.  Web of Science PubMed
First citationIşıklan, M., Sonkaya, Ö. & Hökelek, T. (2013). Acta Cryst. E69, o861–o862.  CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o994-o995
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds