supplementary materials


fj2628 scheme

Acta Cryst. (2013). E69, o881    [ doi:10.1107/S160053681301235X ]

N'-[(E)-2-Hydroxy-5-methoxybenzylidene]pyridine-4-carbohydrazide monohydrate

M. K. Prasanna, M. Sithambaresan, K. Pradeepkumar and M. R. P. Kurup

Abstract top

The title compound, C14H13N3O3·H2O, adopts an E conformation with respect to the azomethine bond and crystallizes in the amide form. An intramolecular O-H...N hydrogen bond occurs. In the crystal, the lattice water molecule plays a major role in the supramolecular architecture by interconnecting adjacent molecules into a three-dimensional netwrok by means of O-H...O, O-H...N and N-H...O hydrogen-bonding interactions. The structure also features two non-classical C-H...O interactions.

Comment top

Derivatives of carbohydrazide and their metal complexes exhibit prominent biological activities and versatile binding properties. They also promote the formation of a chelate binding center (Mangalam & Kurup, 2011). Versatile applications in molecular sensing of metals have received substantial interest during the last decade (Bakir & Brown, 2002).

The compound crystallizes in orthorhombic Pna21 space group. The molecule exists in the E configuration with respect to C7=N1 bond (Sithambaresan & Kurup, 2011) which is confirmed by the torsion angle of -177.6 (3)° of C6—C7—N1—N2 moiety (Fig. 1). The torsion angle of 7.2 (5)° corresponding to N1—N2—C8—O3 moiety supports the cis configuration of the O3 atom with respect to the hydrazine nitrogen atom N1 (Kargar et al., 2010; Shafiq et al., 2009). The C7=N1 [1.272 (4) Å] and C8=O3 [1.219 (3) Å] bond distances are very close to the formal C=N and C=O bond lengths [C=N; 1.28 Å and CO; 1.21 Å] respectively confirming the azomethine bond formation and the existence of carbohydrazide in amido form in solid state.

Incorporation of water molecule in the crystal system of the title compound plays an important role in assembly of the molecules in the lattice through intermolecular hydrogen bonds and makes the crystal system entirely different from the reported one (Kargar et al., 2010). Two classical hydrogen bonds are present in the molecular system (Fig. 2) between the both H atoms of the water molecule and O3 and N3 atoms of the neighbouring molecules with a D···A distances of 2.764 (4) and 2.874 (5) Å respectively. The phenolic oxygen O2 is involved in an intramolecular hydrogen bond with N1 to form a six membered ring. The hydrazinic nitrogen N2 is also involved in hydrogen bonding with oxygen of solvent water. Two non- classical C–H···O hydrogen bonds are also present in the molecule (Table 1). The packing diagram showing the molecular assembly of the title compound along a axis is shown in Fig. 3.

Related literature top

For properties of carbohydrazide and its derivatives, see: Mangalam & Kurup (2011). For molecular sensing of metals, see: Bakir & Brown (2002). For related structures and background references, see: Kargar et al. (2010); Shafiq et al. (2009); Sithambaresan & Kurup (2011). For the synthesis, see: Mangalam et al. (2009).

Experimental top

The title compound was prepared by adapting a reported procedure (Mangalam et al., 2009). To a warm ethanolic solution of 2-hydroxy-5-methoxybenzaldehyde (0.152 g, 1 mmol), a methanolic solution of pyridine-4-carbohydrazide (0.137 g, 1 mmol) was added and the resulting solution was refluxed for 45 minutes after adding 3 drops of glacial acetic acid. On cooling the solution, yellow crystals separated out. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of its solution in 1:1 mixture of ethanol and DMF.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances 0.93–0.96 Å. H atoms were assigned as Uiso(H)=1.2Ueq(carrier) or 1.5Ueq (methyl C). N2–H2' and O2–H2A H atoms were located from difference maps and restrained using DFIX instructions. H atoms of the water molecule were also located from difference maps and restrained using DFIX and DANG instructions. Omitted owing to bad disagreement was the reflection (1 1 0). In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the unique part of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Graphical representation showing hydrogen bondings in the crystal structure of C14H13N3O3.H2O.
[Figure 3] Fig. 3. A view of the unit cell along a axis.
N'-[(E)-2-Hydroxy-5-methoxybenzylidene]pyridine-4-carbohydrazide monohydrate top
Crystal data top
C14H13N3O3·H2OF(000) = 608
Mr = 289.29Dx = 1.335 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1943 reflections
a = 12.6455 (16) Åθ = 2.8–27.5°
b = 12.7423 (16) ŵ = 0.10 mm1
c = 8.9306 (9) ÅT = 296 K
V = 1439.0 (3) Å3Block, yellow
Z = 40.40 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1668 independent reflections
Radiation source: fine-focus sealed tube1134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 8.33 pixels mm-1θmax = 27.0°, θmin = 2.8°
ω and φ scanh = 1615
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1416
Tmin = 0.965, Tmax = 0.976l = 119
10294 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0701P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1668 reflectionsΔρmax = 0.17 e Å3
208 parametersΔρmin = 0.15 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)
Crystal data top
C14H13N3O3·H2OV = 1439.0 (3) Å3
Mr = 289.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.6455 (16) ŵ = 0.10 mm1
b = 12.7423 (16) ÅT = 296 K
c = 8.9306 (9) Å0.40 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1668 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1134 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.976Rint = 0.056
10294 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124Δρmax = 0.17 e Å3
S = 1.00Δρmin = 0.15 e Å3
1668 reflectionsAbsolute structure: ?
208 parametersFlack parameter: ?
6 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1808 (2)0.4322 (3)0.0082 (3)0.0751 (10)
O20.4338 (2)0.2150 (3)0.3839 (3)0.0617 (9)
O30.37204 (18)0.1124 (2)0.7981 (3)0.0518 (7)
O1S1.0079 (2)0.2238 (2)0.7337 (4)0.0590 (8)
N10.2710 (2)0.2049 (2)0.5685 (3)0.0397 (7)
N20.2196 (2)0.1700 (3)0.6956 (3)0.0408 (7)
N30.1091 (3)0.0404 (3)1.1458 (4)0.0575 (9)
C10.3661 (3)0.2681 (3)0.2933 (4)0.0411 (8)
C20.4043 (3)0.3044 (3)0.1575 (4)0.0507 (10)
H20.47470.29280.13260.061*
C30.3409 (3)0.3566 (3)0.0601 (4)0.0533 (11)
H30.36790.37920.03120.064*
C40.2361 (3)0.3764 (3)0.0963 (4)0.0497 (10)
C50.1962 (3)0.3413 (3)0.2291 (4)0.0428 (9)
H50.12570.35400.25280.051*
C60.2605 (3)0.2865 (3)0.3301 (3)0.0353 (8)
C70.2147 (3)0.2507 (3)0.4707 (4)0.0391 (8)
H70.14320.26150.48900.047*
C80.2760 (3)0.1203 (3)0.8009 (3)0.0360 (8)
C90.2130 (2)0.0700 (3)0.9218 (3)0.0345 (8)
C100.2574 (3)0.0576 (3)1.0612 (5)0.0558 (11)
H100.32360.08561.08230.067*
C110.2026 (4)0.0036 (4)1.1683 (5)0.0651 (13)
H110.23290.00251.26280.078*
C120.0673 (3)0.0275 (3)1.0122 (5)0.0513 (10)
H120.00120.05690.99410.062*
C130.1150 (3)0.0265 (3)0.8976 (4)0.0404 (8)
H130.08170.03360.80530.049*
C140.0712 (4)0.4431 (4)0.0117 (5)0.0759 (15)
H14A0.03910.37500.01750.114*
H14B0.04180.48100.07140.114*
H14C0.05760.48090.10270.114*
H2'0.1551 (15)0.191 (3)0.720 (5)0.054 (12)*
H1A0.973 (3)0.279 (2)0.757 (6)0.093 (19)*
H1B0.962 (3)0.175 (2)0.722 (6)0.081 (16)*
H2A0.400 (3)0.198 (3)0.462 (3)0.066 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.069 (2)0.106 (3)0.0501 (17)0.0069 (18)0.0104 (16)0.0408 (18)
O20.0470 (15)0.080 (2)0.0580 (18)0.0194 (14)0.0147 (16)0.0220 (16)
O30.0316 (13)0.0695 (19)0.0542 (15)0.0047 (12)0.0016 (12)0.0243 (13)
O1S0.0376 (14)0.0544 (18)0.085 (2)0.0050 (14)0.0006 (15)0.0197 (16)
N10.0355 (15)0.0484 (18)0.0351 (15)0.0004 (14)0.0036 (14)0.0125 (14)
N20.0352 (16)0.0528 (19)0.0343 (16)0.0034 (15)0.0074 (14)0.0151 (13)
N30.056 (2)0.063 (2)0.054 (2)0.0059 (18)0.0109 (17)0.0184 (17)
C10.0422 (19)0.042 (2)0.0394 (18)0.0026 (16)0.0076 (16)0.0070 (16)
C20.046 (2)0.060 (3)0.046 (2)0.0011 (19)0.0176 (18)0.0028 (18)
C30.063 (3)0.063 (3)0.0331 (19)0.006 (2)0.0128 (19)0.0101 (18)
C40.055 (3)0.058 (3)0.036 (2)0.0101 (19)0.0029 (19)0.0129 (19)
C50.0341 (18)0.055 (2)0.040 (2)0.0037 (16)0.0040 (16)0.0079 (18)
C60.0357 (18)0.037 (2)0.0327 (18)0.0067 (14)0.0004 (15)0.0028 (15)
C70.0307 (18)0.051 (2)0.0357 (19)0.0024 (16)0.0034 (15)0.0033 (16)
C80.0342 (18)0.0392 (19)0.0346 (18)0.0041 (15)0.0024 (16)0.0083 (15)
C90.0324 (17)0.0366 (19)0.0346 (18)0.0009 (14)0.0022 (15)0.0044 (15)
C100.054 (3)0.070 (3)0.044 (2)0.022 (2)0.011 (2)0.017 (2)
C110.072 (3)0.086 (4)0.036 (2)0.021 (3)0.0063 (19)0.023 (2)
C120.0378 (19)0.053 (3)0.063 (3)0.0039 (17)0.0056 (19)0.014 (2)
C130.0373 (18)0.043 (2)0.0413 (19)0.0026 (15)0.0012 (16)0.0073 (16)
C140.066 (3)0.086 (4)0.076 (3)0.016 (3)0.030 (3)0.036 (3)
Geometric parameters (Å, º) top
O1—C41.366 (4)C3—H30.9300
O1—C141.405 (5)C4—C51.364 (5)
O2—C11.358 (5)C5—C61.402 (5)
O2—H2A0.847 (10)C5—H50.9300
O3—C81.218 (4)C6—C71.456 (5)
O1S—H1A0.856 (10)C7—H70.9300
O1S—H1B0.859 (10)C8—C91.487 (4)
N1—C71.269 (4)C9—C131.374 (5)
N1—N21.381 (4)C9—C101.374 (5)
N2—C81.341 (4)C10—C111.367 (6)
N2—H2'0.885 (10)C10—H100.9300
N3—C121.315 (5)C11—H110.9300
N3—C111.325 (5)C12—C131.373 (5)
C1—C21.384 (5)C12—H120.9300
C1—C61.395 (5)C13—H130.9300
C2—C31.357 (6)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.388 (6)C14—H14C0.9600
C4—O1—C14118.0 (3)N1—C7—H7119.5
C1—O2—H2A107 (3)C6—C7—H7119.5
H1A—O1S—H1B106 (2)O3—C8—N2123.8 (3)
C7—N1—N2116.7 (3)O3—C8—C9120.9 (3)
C8—N2—N1118.5 (3)N2—C8—C9115.3 (3)
C8—N2—H2'118 (3)C13—C9—C10117.7 (3)
N1—N2—H2'122 (3)C13—C9—C8122.9 (3)
C12—N3—C11116.3 (3)C10—C9—C8119.2 (3)
O2—C1—C2117.9 (3)C11—C10—C9119.0 (4)
O2—C1—C6123.1 (3)C11—C10—H10120.5
C2—C1—C6118.9 (3)C9—C10—H10120.5
C3—C2—C1121.3 (4)N3—C11—C10124.0 (4)
C3—C2—H2119.3N3—C11—H11118.0
C1—C2—H2119.3C10—C11—H11118.0
C2—C3—C4120.2 (3)N3—C12—C13124.2 (4)
C2—C3—H3119.9N3—C12—H12117.9
C4—C3—H3119.9C13—C12—H12117.9
C5—C4—O1125.1 (4)C12—C13—C9118.8 (3)
C5—C4—C3119.8 (4)C12—C13—H13120.6
O1—C4—C3115.1 (3)C9—C13—H13120.6
C4—C5—C6120.5 (3)O1—C14—H14A109.5
C4—C5—H5119.7O1—C14—H14B109.5
C6—C5—H5119.7H14A—C14—H14B109.5
C1—C6—C5119.2 (3)O1—C14—H14C109.5
C1—C6—C7122.1 (3)H14A—C14—H14C109.5
C5—C6—C7118.7 (3)H14B—C14—H14C109.5
N1—C7—C6121.0 (3)
C7—N1—N2—C8179.3 (3)C1—C6—C7—N13.1 (5)
O2—C1—C2—C3179.0 (4)C5—C6—C7—N1176.8 (3)
C6—C1—C2—C30.4 (6)N1—N2—C8—O37.1 (6)
C1—C2—C3—C41.1 (6)N1—N2—C8—C9170.4 (3)
C14—O1—C4—C58.9 (7)O3—C8—C9—C13144.0 (4)
C14—O1—C4—C3171.8 (4)N2—C8—C9—C1333.6 (5)
C2—C3—C4—C51.3 (6)O3—C8—C9—C1030.2 (6)
C2—C3—C4—O1178.1 (4)N2—C8—C9—C10152.3 (4)
O1—C4—C5—C6178.6 (4)C13—C9—C10—C110.2 (6)
C3—C4—C5—C60.7 (6)C8—C9—C10—C11174.6 (4)
O2—C1—C6—C5179.5 (4)C12—N3—C11—C101.9 (7)
C2—C1—C6—C50.1 (5)C9—C10—C11—N31.6 (7)
O2—C1—C6—C70.6 (5)C11—N3—C12—C130.9 (6)
C2—C1—C6—C7180.0 (3)N3—C12—C13—C90.4 (6)
C4—C5—C6—C10.0 (5)C10—C9—C13—C120.7 (5)
C4—C5—C6—C7179.9 (3)C8—C9—C13—C12173.5 (3)
N2—N1—C7—C6177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1Si0.89 (1)1.91 (1)2.784 (4)168 (4)
O1S—H1A···O3ii0.86 (1)1.92 (2)2.764 (4)170 (4)
O1S—H1B···N3iii0.86 (1)2.05 (2)2.874 (5)160 (4)
O2—H2A···N10.85 (1)1.89 (3)2.642 (4)147 (4)
C11—H11···O1iv0.932.463.370 (5)164
C14—H14C···O3v0.962.583.425 (5)147
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z1/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2'···O1Si0.885 (10)1.912 (14)2.784 (4)168 (4)
O1S—H1A···O3ii0.856 (10)1.918 (15)2.764 (4)170 (4)
O1S—H1B···N3iii0.859 (10)2.050 (17)2.874 (5)160 (4)
O2—H2A···N10.847 (10)1.89 (3)2.642 (4)147 (4)
C11—H11···O1iv0.932.463.370 (5)164
C14—H14C···O3v0.962.583.425 (5)147
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y, z1/2; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z1/2.
Acknowledgements top

MKP thanks the University Grants Commission, Bangalore, India, for the award of a Teacher Fellowship. MRPK thanks the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the data collection.

references
References top

Bakir, M. & Brown, O. (2002). J. Mol. Struct. 609, 129–136.

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kargar, H., Kia, R., Akkurt, M. & Büyükgüngör, O. (2010). Acta Cryst. E66, o2982.

Mangalam, N. A. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22–28.

Mangalam, N. A., Sivakumar, S., Sheeja, S. R., Kurup, M. R. P. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 4191–4197.

Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2899.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o2972.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.