supplementary materials


fy2093 scheme

Acta Cryst. (2013). E69, o882    [ doi:10.1107/S1600536813012336 ]

4-(Adamantan-1-yl)-2-(4-fluorophenyl)quinoline

Z. Kozubková, E. Babjaková, P. Bartos and R. Vícha

Abstract top

In the molecule of the title compound, C25H24FN, the dihedral angle between the best planes of the quinoline fragment (rings A and B) and the benzene ring (C) is 9.51 (4)°. In the crystal, molecules are linked into centrosymmetric dimers via pairs of weak C-H...F interactions. The molecules are stacked into chains along the a axis by weak off-set [pi]-[pi] interactions between the A and C rings of translation-related molecules with a centroid-centroid distance of 3.6440 (2) Å.

Comment top

Quinoline and its derivatives are very important compounds whose structures occur in a variety of natural alkaloids and therapeutics with interesting biological activities. As an example, derivatives of 4-(1-adamantyl)quinoline-2-carboxylic acid have been recently described as potent antituberculosis agents (Nayyar et al., 2009). The title compound was prepared as a part of our research aimed at the examination of novel convenient synthetic procedures toward 4-(1-adamantyl)quinoline derivatives (Kozubková et al., 2012).

The molecule of the title compound consists of three motifs – quinoline and benzene rings and adamantane cage (Figure 1). The quinoline and benzene rings are essentially planar with the respective r.m.s. deviations of 0.0303 and 0.0052 Å and the respective maximum deviations of -0.0477 (12) Å for C1 and 0.0067 (12) Å for C13. The dihedral angle between the planes of these rings is 9.51 (4)°. The adamantane cage consist of free fused cyclohexane rings in classical chairs conformations with C—C—C angles in the range 105.68 (10)–111.83 (11)°. The torsion angles describing the mutual orientation of the benzene, quinoline and adamantane moieties C2–C1–C10–C15 and C4–C3–C16–C17 are -10.62 (19) and 66.77 (15)°, respectively. Although the quinoline ring is essentially planar, it is markedly deformed in plane as it is usual for similar quinoline rings substituted with bulky adamantane at position 4 (Kozubková et al., 2012). The most affected valence angles N1–C9–C8, C2–C3–C4, N1–C9–C4 and C3–C4–C5 are 115.82 (11), 115.91 (11), 124.06 (12) and 125.91 (12)°, respectively. The packing of the molecules in the crystal is stabilized by a weak C—H···F interaction (Table 1, Figure 2). In addition, a weak ππ interaction (Figure 2) is observed between the benzene ring (C10–C15) and quinoline ring (C1–C9, N1), with the shortest centroid-to-centroid distance of 3.6440 (2) Å. Distances of C14, C15, and Cg1 from best plane of adjacent quinoline ring are -3.2742 (13), -3.2448 (13), and -3.4517 (13) Å.

Related literature top

For the preparation and spectroscopic properties of the title compound, see: Kozubková et al. (2012). For related structures, see: Kozubková et al. (2012); Prabhuswamy et al. (2012). For the biological activity of related compounds, see: Nayyar et al. (2009).

Experimental top

The title compound was prepared via a Friedländer reaction from the corresponding 1-adamantyl aminophenyl ketone and 4-fluoroacetophenone as it has been described previously (Kozubková et al., 2012). A single-crystal usable for X-ray analysis was obtained by slow spontaneous evaporation from deuterochloloform at room temperature.

Refinement top

All H atoms were placed at calculated positions and were refined as riding with their Uiso set to 1.2Ueq of the respective carrier atoms. C—H distances are 0.9500 Å for aromatic H atoms, 0.9900 Å for H atoms of secondary carbon atoms and 1.0000 Å for H atoms of tertiary carbon atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the asymmetric unit with atoms represented as 50% probability ellipsoids. H-atoms are shown as small spheres at arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing the intermolecular ππ and C–H···F interactions as dotted lines. H-atoms have been omitted for clarity (except for those participating in H-bonds). Cg1 and Cg2 are the respective centers of gravity of the C10–C15 and C1–C4,C9,N1 rings. Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z.
4-(Adamantan-1-yl)-2-(4-fluorophenyl)quinoline top
Crystal data top
C25H24FNZ = 2
Mr = 357.45F(000) = 380
Triclinic, P1Dx = 1.329 Mg m3
Hall symbol: -P 1Melting point: 435 K
a = 6.4604 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9964 (4) ÅCell parameters from 5109 reflections
c = 12.9074 (5) Åθ = 3.2–27.2°
α = 93.205 (3)°µ = 0.08 mm1
β = 96.446 (3)°T = 120 K
γ = 100.507 (3)°Block, colourless
V = 893.14 (6) Å30.60 × 0.40 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3142 independent reflections
Radiation source: Enhance (Mo) X-ray Source2445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 813
Tmin = 0.971, Tmax = 1.000l = 1515
9490 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.20 e Å3
3142 reflectionsΔρmin = 0.19 e Å3
244 parameters
Crystal data top
C25H24FNγ = 100.507 (3)°
Mr = 357.45V = 893.14 (6) Å3
Triclinic, P1Z = 2
a = 6.4604 (3) ÅMo Kα radiation
b = 10.9964 (4) ŵ = 0.08 mm1
c = 12.9074 (5) ÅT = 120 K
α = 93.205 (3)°0.60 × 0.40 × 0.20 mm
β = 96.446 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3142 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2445 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 1.000Rint = 0.015
9490 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.099Δρmax = 0.20 e Å3
S = 1.08Δρmin = 0.19 e Å3
3142 reflectionsAbsolute structure: ?
244 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.34394 (12)0.33553 (7)0.56712 (6)0.0332 (2)
N11.06928 (16)0.26583 (10)0.29611 (8)0.0214 (3)
C10.92455 (19)0.17633 (12)0.32331 (9)0.0198 (3)
C20.91382 (19)0.05025 (12)0.29032 (9)0.0200 (3)
H20.80440.01010.31100.024*
C31.05410 (19)0.01109 (12)0.22984 (9)0.0187 (3)
C41.21873 (19)0.10663 (12)0.20249 (9)0.0194 (3)
C51.39056 (19)0.08736 (13)0.14764 (9)0.0213 (3)
H51.40010.00520.12470.026*
C61.5421 (2)0.18375 (13)0.12701 (9)0.0243 (3)
H61.65460.16740.09020.029*
C71.5339 (2)0.30672 (13)0.15946 (10)0.0261 (3)
H71.63920.37330.14410.031*
C81.3735 (2)0.32951 (13)0.21319 (10)0.0244 (3)
H81.36780.41260.23510.029*
C91.21530 (19)0.23188 (12)0.23691 (9)0.0202 (3)
C100.77164 (19)0.21533 (12)0.39064 (9)0.0195 (3)
C110.8057 (2)0.33784 (12)0.43399 (10)0.0236 (3)
H110.92880.39440.42180.028*
C120.6640 (2)0.37833 (13)0.49428 (10)0.0250 (3)
H120.68890.46150.52400.030*
C130.4865 (2)0.29515 (13)0.51007 (9)0.0236 (3)
C140.4466 (2)0.17378 (13)0.47036 (9)0.0237 (3)
H140.32310.11810.48340.028*
C150.59069 (19)0.13429 (12)0.41086 (9)0.0216 (3)
H150.56580.05030.38320.026*
C161.03604 (19)0.12759 (12)0.19886 (9)0.0180 (3)
C171.22648 (19)0.17477 (12)0.25635 (9)0.0197 (3)
H17A1.36070.12640.23830.024*
H17B1.22600.16210.33290.024*
C181.2147 (2)0.31265 (12)0.22571 (9)0.0218 (3)
H181.34110.34030.26200.026*
C191.0124 (2)0.38832 (12)0.25789 (9)0.0230 (3)
H19A1.00500.47760.23900.028*
H19B1.01310.37630.33450.028*
C200.82066 (19)0.34565 (12)0.20168 (9)0.0214 (3)
H200.68790.39380.22350.026*
C210.83436 (19)0.20723 (12)0.23111 (9)0.0203 (3)
H21A0.83460.19380.30760.024*
H21B0.70760.18040.19630.024*
C221.0223 (2)0.15445 (12)0.07863 (9)0.0207 (3)
H22A0.89240.13070.04410.025*
H22B1.14630.10390.05280.025*
C231.0176 (2)0.29224 (12)0.05047 (9)0.0220 (3)
H231.01640.30670.02680.026*
C240.8172 (2)0.36869 (13)0.08344 (9)0.0238 (3)
H24A0.81130.45790.06480.029*
H24B0.69010.34440.04650.029*
C251.2133 (2)0.33189 (13)0.10712 (9)0.0235 (3)
H25A1.21100.42040.08710.028*
H25B1.34370.28220.08620.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0378 (5)0.0358 (5)0.0331 (4)0.0163 (4)0.0192 (4)0.0045 (4)
N10.0203 (6)0.0218 (7)0.0228 (5)0.0056 (5)0.0024 (4)0.0036 (5)
C10.0184 (7)0.0214 (8)0.0192 (6)0.0043 (6)0.0010 (5)0.0032 (6)
C20.0183 (6)0.0196 (8)0.0221 (6)0.0028 (6)0.0040 (5)0.0026 (6)
C30.0176 (6)0.0214 (8)0.0165 (6)0.0034 (6)0.0001 (5)0.0022 (5)
C40.0194 (6)0.0233 (8)0.0154 (6)0.0043 (6)0.0000 (5)0.0031 (5)
C50.0212 (7)0.0244 (8)0.0180 (6)0.0034 (6)0.0026 (5)0.0015 (5)
C60.0208 (7)0.0325 (9)0.0195 (6)0.0029 (6)0.0051 (5)0.0041 (6)
C70.0235 (7)0.0271 (9)0.0265 (7)0.0007 (6)0.0051 (6)0.0076 (6)
C80.0270 (7)0.0185 (8)0.0271 (7)0.0020 (6)0.0035 (6)0.0049 (6)
C90.0192 (6)0.0230 (8)0.0187 (6)0.0048 (6)0.0008 (5)0.0041 (6)
C100.0204 (7)0.0202 (8)0.0186 (6)0.0065 (6)0.0007 (5)0.0017 (5)
C110.0229 (7)0.0218 (8)0.0261 (7)0.0034 (6)0.0035 (5)0.0022 (6)
C120.0309 (8)0.0217 (8)0.0235 (7)0.0087 (6)0.0036 (6)0.0004 (6)
C130.0268 (7)0.0306 (9)0.0179 (6)0.0139 (7)0.0068 (5)0.0040 (6)
C140.0226 (7)0.0268 (9)0.0230 (6)0.0052 (6)0.0056 (5)0.0062 (6)
C150.0230 (7)0.0202 (8)0.0219 (6)0.0056 (6)0.0020 (5)0.0012 (6)
C160.0172 (6)0.0187 (8)0.0183 (6)0.0033 (6)0.0044 (5)0.0010 (5)
C170.0174 (6)0.0236 (8)0.0179 (6)0.0033 (6)0.0030 (5)0.0003 (5)
C180.0220 (7)0.0229 (8)0.0222 (6)0.0086 (6)0.0029 (5)0.0013 (6)
C190.0313 (7)0.0183 (8)0.0212 (6)0.0068 (6)0.0075 (5)0.0008 (6)
C200.0194 (7)0.0209 (8)0.0236 (6)0.0006 (6)0.0077 (5)0.0005 (6)
C210.0178 (6)0.0224 (8)0.0212 (6)0.0043 (6)0.0048 (5)0.0005 (6)
C220.0188 (6)0.0249 (8)0.0179 (6)0.0022 (6)0.0026 (5)0.0023 (5)
C230.0247 (7)0.0253 (8)0.0155 (6)0.0033 (6)0.0043 (5)0.0023 (5)
C240.0230 (7)0.0240 (8)0.0227 (7)0.0017 (6)0.0019 (5)0.0026 (6)
C250.0238 (7)0.0222 (8)0.0256 (7)0.0052 (6)0.0076 (5)0.0018 (6)
Geometric parameters (Å, º) top
F1—C131.3610 (14)C15—H150.9500
N1—C11.3201 (16)C16—C211.5441 (16)
N1—C91.3681 (16)C16—C171.5506 (16)
C1—C21.4144 (17)C16—C221.5530 (15)
C1—C101.4901 (17)C17—C181.5313 (17)
C2—C31.3710 (16)C17—H17A0.9900
C2—H20.9500C17—H17B0.9900
C3—C41.4414 (17)C18—C191.5287 (17)
C3—C161.5348 (17)C18—C251.5322 (16)
C4—C51.4227 (17)C18—H181.0000
C4—C91.4282 (18)C19—C201.5262 (17)
C5—C61.3654 (18)C19—H19A0.9900
C5—H50.9500C19—H19B0.9900
C6—C71.4051 (18)C20—C241.5300 (16)
C6—H60.9500C20—C211.5322 (17)
C7—C81.3617 (18)C20—H201.0000
C7—H70.9500C21—H21A0.9900
C8—C91.4134 (18)C21—H21B0.9900
C8—H80.9500C22—C231.5324 (17)
C10—C151.3941 (17)C22—H22A0.9900
C10—C111.3986 (18)C22—H22B0.9900
C11—C121.3826 (17)C23—C241.5264 (17)
C11—H110.9500C23—C251.5337 (17)
C12—C131.3727 (19)C23—H231.0000
C12—H120.9500C24—H24A0.9900
C13—C141.3708 (18)C24—H24B0.9900
C14—C151.3838 (17)C25—H25A0.9900
C14—H140.9500C25—H25B0.9900
C1—N1—C9117.34 (11)C18—C17—H17A109.5
N1—C1—C2122.11 (11)C16—C17—H17A109.5
N1—C1—C10116.32 (12)C18—C17—H17B109.5
C2—C1—C10121.57 (11)C16—C17—H17B109.5
C3—C2—C1123.02 (12)H17A—C17—H17B108.1
C3—C2—H2118.5C19—C18—C17109.63 (10)
C1—C2—H2118.5C19—C18—C25109.72 (10)
C2—C3—C4115.91 (12)C17—C18—C25109.25 (10)
C2—C3—C16120.26 (11)C19—C18—H18109.4
C4—C3—C16123.79 (11)C17—C18—H18109.4
C5—C4—C9116.54 (12)C25—C18—H18109.4
C5—C4—C3125.90 (12)C20—C19—C18108.95 (10)
C9—C4—C3117.51 (11)C20—C19—H19A109.9
C6—C5—C4121.80 (13)C18—C19—H19A109.9
C6—C5—H5119.1C20—C19—H19B109.9
C4—C5—H5119.1C18—C19—H19B109.9
C5—C6—C7120.96 (12)H19A—C19—H19B108.3
C5—C6—H6119.5C19—C20—C24109.41 (10)
C7—C6—H6119.5C19—C20—C21109.41 (10)
C8—C7—C6119.30 (13)C24—C20—C21110.10 (10)
C8—C7—H7120.4C19—C20—H20109.3
C6—C7—H7120.4C24—C20—H20109.3
C7—C8—C9121.27 (13)C21—C20—H20109.3
C7—C8—H8119.4C20—C21—C16111.83 (10)
C9—C8—H8119.4C20—C21—H21A109.3
N1—C9—C8115.81 (12)C16—C21—H21A109.3
N1—C9—C4124.04 (12)C20—C21—H21B109.3
C8—C9—C4120.11 (11)C16—C21—H21B109.3
C15—C10—C11117.95 (12)H21A—C21—H21B107.9
C15—C10—C1122.31 (12)C23—C22—C16110.71 (10)
C11—C10—C1119.73 (11)C23—C22—H22A109.5
C12—C11—C10121.36 (12)C16—C22—H22A109.5
C12—C11—H11119.3C23—C22—H22B109.5
C10—C11—H11119.3C16—C22—H22B109.5
C13—C12—C11118.23 (13)H22A—C22—H22B108.1
C13—C12—H12120.9C24—C23—C22109.06 (10)
C11—C12—H12120.9C24—C23—C25109.39 (10)
F1—C13—C14118.85 (12)C22—C23—C25110.17 (10)
F1—C13—C12118.38 (12)C24—C23—H23109.4
C14—C13—C12122.77 (12)C22—C23—H23109.4
C13—C14—C15118.37 (12)C25—C23—H23109.4
C13—C14—H14120.8C23—C24—C20108.93 (10)
C15—C14—H14120.8C23—C24—H24A109.9
C14—C15—C10121.32 (13)C20—C24—H24A109.9
C14—C15—H15119.3C23—C24—H24B109.9
C10—C15—H15119.3C20—C24—H24B109.9
C3—C16—C21112.40 (10)H24A—C24—H24B108.3
C3—C16—C17109.61 (10)C18—C25—C23109.93 (10)
C21—C16—C17106.18 (10)C18—C25—H25A109.7
C3—C16—C22111.85 (10)C23—C25—H25A109.7
C21—C16—C22105.68 (10)C18—C25—H25B109.7
C17—C16—C22110.94 (10)C23—C25—H25B109.7
C18—C17—C16110.84 (10)H25A—C25—H25B108.2
C9—N1—C1—C22.15 (17)C11—C10—C15—C141.14 (18)
C9—N1—C1—C10178.09 (10)C1—C10—C15—C14177.50 (11)
N1—C1—C2—C31.36 (18)C2—C3—C16—C217.19 (15)
C10—C1—C2—C3178.88 (11)C4—C3—C16—C21175.40 (10)
C1—C2—C3—C41.05 (17)C2—C3—C16—C17110.64 (12)
C1—C2—C3—C16178.66 (10)C4—C3—C16—C1766.78 (13)
C2—C3—C4—C5174.85 (11)C2—C3—C16—C22125.88 (12)
C16—C3—C4—C52.67 (18)C4—C3—C16—C2256.70 (14)
C2—C3—C4—C92.43 (15)C3—C16—C17—C18179.14 (9)
C16—C3—C4—C9179.94 (10)C21—C16—C17—C1859.23 (12)
C9—C4—C5—C61.31 (17)C22—C16—C17—C1855.13 (13)
C3—C4—C5—C6178.61 (11)C16—C17—C18—C1961.68 (12)
C4—C5—C6—C70.01 (18)C16—C17—C18—C2558.58 (12)
C5—C6—C7—C80.69 (18)C17—C18—C19—C2060.25 (12)
C6—C7—C8—C90.01 (18)C25—C18—C19—C2059.73 (13)
C1—N1—C9—C8177.26 (10)C18—C19—C20—C2461.41 (13)
C1—N1—C9—C40.59 (17)C18—C19—C20—C2159.29 (12)
C7—C8—C9—N1176.56 (11)C19—C20—C21—C1660.65 (12)
C7—C8—C9—C41.39 (18)C24—C20—C21—C1659.63 (13)
C5—C4—C9—N1175.79 (10)C3—C16—C21—C20178.86 (9)
C3—C4—C9—N11.74 (17)C17—C16—C21—C2059.02 (12)
C5—C4—C9—C81.98 (16)C22—C16—C21—C2058.88 (12)
C3—C4—C9—C8179.51 (10)C3—C16—C22—C23176.68 (10)
N1—C1—C10—C15169.13 (10)C21—C16—C22—C2360.71 (12)
C2—C1—C10—C1510.64 (18)C17—C16—C22—C2353.95 (13)
N1—C1—C10—C119.49 (16)C16—C22—C23—C2463.30 (12)
C2—C1—C10—C11170.75 (10)C16—C22—C23—C2556.77 (13)
C15—C10—C11—C120.61 (18)C22—C23—C24—C2060.27 (13)
C1—C10—C11—C12178.06 (11)C25—C23—C24—C2060.28 (14)
C10—C11—C12—C130.57 (19)C19—C20—C24—C2361.85 (14)
C11—C12—C13—F1178.33 (11)C21—C20—C24—C2358.43 (13)
C11—C12—C13—C141.30 (19)C19—C18—C25—C2358.80 (14)
F1—C13—C14—C15178.84 (11)C17—C18—C25—C2361.41 (13)
C12—C13—C14—C150.79 (19)C24—C23—C25—C1859.05 (14)
C13—C14—C15—C100.47 (18)C22—C23—C25—C1860.83 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.952.613.2955 (12)129
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.952.613.2955 (12)129.2
Symmetry code: (i) x+1, y+1, z+1.
Acknowledgements top

The financial support of this work by the Internal Founding Agency of Tomas Bata University in Zlin (project No. IGA/FT/2013/008) is gratefully acknowledged.

references
References top

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kozubková, Z., Rouchal, M., Nečas, M. & Vícha, R. (2012). Helv. Chim. Acta, 95, 1003–1017.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Nayyar, A., Patel, S. R., Shaikh, M., Coutinho, E. & Jain, R. (2009). Eur. J. Med. Chem. 44, 2017–2029.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

Prabhuswamy, M., Swaroop, T. R., Madan Kumar, S., Rangappa, K. S. & Lokanath, N. K. (2012). Acta Cryst. E68, o3250.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.