organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Fluoro­phenyl­sulfin­yl)-2,4,6-tri­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 13 May 2013; accepted 27 May 2013; online 31 May 2013)

In the title compound, C17H15FO2S, the 2-fluoro­phenyl ring makes a dihedral angle of 87.53 (5)° with the mean plane [r.m.s. deviation = 0.013 (1) Å] of the benzo­furan fragment. In the crystal, mol­ecules are linked by weak C—H⋯F, C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o586.]); Seo et al. (2011[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o3113.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15FO2S

  • Mr = 302.35

  • Monoclinic, P 21 /c

  • a = 13.6892 (5) Å

  • b = 6.0339 (2) Å

  • c = 17.1786 (7) Å

  • β = 92.741 (2)°

  • V = 1417.32 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.32 × 0.27 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.527, Tmax = 0.746

  • 13205 measured reflections

  • 3277 independent reflections

  • 2665 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 1.07

  • 3277 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.42 3.347 (2) 164
C10—H10C⋯O2ii 0.98 2.42 3.385 (2) 167
C11—H11A⋯F1iii 0.98 2.54 3.160 (2) 121
C11—H11BCg1iv 0.98 2.69 3.476 (2) 138
C15—H15⋯Cg2v 0.95 2.71 3.548 (2) 147
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) x, y-1, z; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 2,4,6-trimethyl-1-benzofuran derivatives containing 4-fluorophenylsulinyl (Choi et al., 2010) and 3-fluorophenylsulfinyl (Seo et al., 2011) substituents in 3-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the 2-fluorophenyl ring and the mean plane of the benzofuran fragment is 87.53 (5)°. In the crystal packing, molecules are connected by weak C—H···F and C—H···O hydrogen bonds (Fig. 2 & Table 1), and by C—H···π interactions (Fig. 3 & Table 1), forming a three-dimensional network.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010); Seo et al. (2011).

Experimental top

3-Chloroperoxybenzoic acid (77%, 291 mg, 1.3 mmol) was added in small portions to a stirred solution of 3-(2-fluorophenylsulfanyl)-2,4,6-trimethyl-1-benzofuran (343 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 72%, m.p. 423–424 K; Rf = 0.67 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···F and C—H···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x, - y + 1/2, z - 1/2; (ii) - x + 1, - y + 1, - z + 1; (iii) - x + 2, - y, - z + 1; (vi) x, - y + 1/2, z + 1/2.]
[Figure 3] Fig. 3. A view of the C—H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (iv) x, y - 1, z; (v) - x + 1, y + 1/2, - z + 3/2; (vii) x, y + 1, z; (viii) - x + 2, y - 1/2, - z + 3/2.]
3-(2-Fluorophenylsulfinyl)-2,4,6-trimethyl-1-benzofuran top
Crystal data top
C17H15FO2SF(000) = 632
Mr = 302.35Dx = 1.417 Mg m3
Monoclinic, P21/cMelting point = 423–424 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.6892 (5) ÅCell parameters from 3545 reflections
b = 6.0339 (2) Åθ = 2.4–27.5°
c = 17.1786 (7) ŵ = 0.24 mm1
β = 92.741 (2)°T = 173 K
V = 1417.32 (9) Å3Block, colourless
Z = 40.32 × 0.27 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3277 independent reflections
Radiation source: rotating anode2665 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.048
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.5°
ϕ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 77
Tmin = 0.527, Tmax = 0.746l = 2216
13205 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.114H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.049P)2 + 0.6536P]
where P = (Fo2 + 2Fc2)/3
3277 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C17H15FO2SV = 1417.32 (9) Å3
Mr = 302.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6892 (5) ŵ = 0.24 mm1
b = 6.0339 (2) ÅT = 173 K
c = 17.1786 (7) Å0.32 × 0.27 × 0.12 mm
β = 92.741 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2665 reflections with I > 2σ(I)
Tmin = 0.527, Tmax = 0.746Rint = 0.048
13205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
3277 reflectionsΔρmin = 0.43 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76961 (3)0.18134 (7)0.61409 (3)0.02772 (14)
F10.95958 (8)0.3216 (2)0.55355 (7)0.0387 (3)
O10.75116 (9)0.2075 (2)0.38753 (7)0.0263 (3)
O20.68255 (10)0.1904 (2)0.66215 (8)0.0380 (4)
C10.73907 (12)0.2512 (3)0.51663 (10)0.0236 (4)
C20.68389 (12)0.4305 (3)0.47829 (9)0.0205 (3)
C30.62608 (12)0.6111 (3)0.50021 (9)0.0215 (3)
C40.58790 (12)0.7440 (3)0.44025 (10)0.0235 (4)
H40.54960.86820.45380.028*
C50.60215 (12)0.7073 (3)0.36105 (10)0.0236 (4)
C60.65664 (12)0.5260 (3)0.33935 (10)0.0250 (4)
H60.66690.49380.28620.030*
C70.69534 (12)0.3945 (3)0.39892 (10)0.0219 (3)
C80.77602 (13)0.1244 (3)0.45981 (11)0.0256 (4)
C90.60497 (14)0.6599 (3)0.58346 (10)0.0292 (4)
H9A0.65800.74970.60730.044*
H9B0.59990.52040.61220.044*
H9C0.54320.74130.58520.044*
C100.55703 (14)0.8621 (3)0.30094 (11)0.0313 (4)
H10A0.57040.80810.24870.047*
H10B0.58511.01050.30830.047*
H10C0.48620.86870.30660.047*
C110.83800 (15)0.0766 (3)0.46046 (13)0.0355 (5)
H11A0.90240.03930.44150.053*
H11B0.80700.18950.42650.053*
H11C0.84570.13420.51370.053*
C120.84182 (13)0.4201 (3)0.64254 (10)0.0249 (4)
C130.93069 (13)0.4587 (3)0.61046 (10)0.0273 (4)
C140.99117 (14)0.6298 (3)0.63429 (11)0.0344 (4)
H141.05190.65320.61100.041*
C150.96141 (16)0.7673 (3)0.69317 (12)0.0375 (5)
H151.00160.88810.71020.045*
C160.87342 (16)0.7297 (4)0.72739 (11)0.0368 (5)
H160.85360.82410.76800.044*
C170.81432 (14)0.5551 (3)0.70271 (10)0.0313 (4)
H170.75470.52790.72710.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0300 (3)0.0266 (2)0.0265 (2)0.00358 (18)0.00096 (18)0.00813 (17)
F10.0313 (6)0.0457 (7)0.0401 (7)0.0008 (5)0.0103 (5)0.0076 (5)
O10.0266 (6)0.0262 (6)0.0264 (6)0.0024 (5)0.0039 (5)0.0054 (5)
O20.0360 (8)0.0495 (9)0.0292 (7)0.0118 (7)0.0083 (6)0.0102 (6)
C10.0242 (9)0.0221 (8)0.0244 (8)0.0027 (7)0.0015 (7)0.0010 (7)
C20.0209 (8)0.0209 (8)0.0199 (8)0.0026 (6)0.0015 (6)0.0001 (6)
C30.0213 (8)0.0242 (8)0.0193 (8)0.0022 (7)0.0037 (6)0.0018 (6)
C40.0223 (8)0.0242 (8)0.0245 (9)0.0023 (7)0.0041 (7)0.0009 (7)
C50.0217 (8)0.0287 (9)0.0205 (8)0.0022 (7)0.0017 (7)0.0016 (7)
C60.0241 (9)0.0328 (9)0.0183 (8)0.0036 (7)0.0033 (7)0.0020 (7)
C70.0206 (8)0.0227 (8)0.0228 (8)0.0021 (7)0.0047 (7)0.0048 (7)
C80.0232 (9)0.0234 (8)0.0302 (9)0.0032 (7)0.0016 (7)0.0015 (7)
C90.0362 (10)0.0315 (9)0.0202 (8)0.0035 (8)0.0054 (7)0.0036 (7)
C100.0304 (10)0.0378 (10)0.0258 (9)0.0015 (8)0.0007 (8)0.0055 (8)
C110.0341 (10)0.0246 (9)0.0483 (12)0.0036 (8)0.0062 (9)0.0013 (8)
C120.0245 (9)0.0288 (9)0.0213 (8)0.0003 (7)0.0012 (7)0.0062 (7)
C130.0262 (9)0.0321 (9)0.0238 (8)0.0027 (7)0.0015 (7)0.0033 (7)
C140.0280 (10)0.0411 (11)0.0338 (10)0.0068 (8)0.0003 (8)0.0078 (9)
C150.0418 (12)0.0335 (10)0.0361 (11)0.0062 (9)0.0083 (9)0.0023 (8)
C160.0418 (12)0.0397 (11)0.0282 (10)0.0054 (9)0.0051 (9)0.0039 (8)
C170.0292 (10)0.0410 (11)0.0237 (9)0.0037 (8)0.0010 (7)0.0025 (8)
Geometric parameters (Å, º) top
S1—O21.4830 (15)C9—H9A0.9800
S1—C11.7575 (18)C9—H9B0.9800
S1—C121.8014 (19)C9—H9C0.9800
F1—C131.354 (2)C10—H10A0.9800
O1—C81.367 (2)C10—H10B0.9800
O1—C71.382 (2)C10—H10C0.9800
C1—C81.357 (3)C11—H11A0.9800
C1—C21.458 (2)C11—H11B0.9800
C2—C71.397 (2)C11—H11C0.9800
C2—C31.409 (2)C12—C131.379 (2)
C3—C41.388 (2)C12—C171.382 (3)
C3—C91.502 (2)C13—C141.373 (3)
C4—C51.401 (2)C14—C151.385 (3)
C4—H40.9500C14—H140.9500
C5—C61.385 (2)C15—C161.384 (3)
C5—C101.503 (2)C15—H150.9500
C6—C71.380 (2)C16—C171.382 (3)
C6—H60.9500C16—H160.9500
C8—C111.480 (2)C17—H170.9500
O2—S1—C1111.13 (8)H9A—C9—H9C109.5
O2—S1—C12105.34 (9)H9B—C9—H9C109.5
C1—S1—C1299.73 (8)C5—C10—H10A109.5
C8—O1—C7106.64 (13)C5—C10—H10B109.5
C8—C1—C2107.23 (15)H10A—C10—H10B109.5
C8—C1—S1118.03 (14)C5—C10—H10C109.5
C2—C1—S1134.65 (13)H10A—C10—H10C109.5
C7—C2—C3118.16 (15)H10B—C10—H10C109.5
C7—C2—C1104.22 (14)C8—C11—H11A109.5
C3—C2—C1137.61 (15)C8—C11—H11B109.5
C4—C3—C2116.43 (15)H11A—C11—H11B109.5
C4—C3—C9120.71 (16)C8—C11—H11C109.5
C2—C3—C9122.85 (15)H11A—C11—H11C109.5
C3—C4—C5124.36 (16)H11B—C11—H11C109.5
C3—C4—H4117.8C13—C12—C17118.43 (17)
C5—C4—H4117.8C13—C12—S1120.65 (14)
C6—C5—C4119.20 (16)C17—C12—S1120.58 (14)
C6—C5—C10120.98 (16)F1—C13—C14118.80 (17)
C4—C5—C10119.81 (16)F1—C13—C12118.61 (16)
C7—C6—C5116.55 (15)C14—C13—C12122.59 (18)
C7—C6—H6121.7C13—C14—C15118.30 (18)
C5—C6—H6121.7C13—C14—H14120.9
C6—C7—O1124.03 (15)C15—C14—H14120.9
C6—C7—C2125.26 (16)C16—C15—C14120.28 (19)
O1—C7—C2110.71 (15)C16—C15—H15119.9
C1—C8—O1111.18 (15)C14—C15—H15119.9
C1—C8—C11133.64 (18)C17—C16—C15120.22 (19)
O1—C8—C11115.16 (16)C17—C16—H16119.9
C3—C9—H9A109.5C15—C16—H16119.9
C3—C9—H9B109.5C12—C17—C16120.14 (18)
H9A—C9—H9B109.5C12—C17—H17119.9
C3—C9—H9C109.5C16—C17—H17119.9
O2—S1—C1—C8135.67 (14)C3—C2—C7—O1178.00 (14)
C12—S1—C1—C8113.59 (15)C1—C2—C7—O10.98 (18)
O2—S1—C1—C248.2 (2)C2—C1—C8—O11.1 (2)
C12—S1—C1—C262.50 (19)S1—C1—C8—O1176.04 (11)
C8—C1—C2—C71.21 (18)C2—C1—C8—C11179.30 (19)
S1—C1—C2—C7175.18 (15)S1—C1—C8—C112.2 (3)
C8—C1—C2—C3177.45 (19)C7—O1—C8—C10.45 (19)
S1—C1—C2—C36.2 (3)C7—O1—C8—C11179.04 (15)
C7—C2—C3—C42.3 (2)O2—S1—C12—C13177.90 (14)
C1—C2—C3—C4179.19 (19)C1—S1—C12—C1366.86 (15)
C7—C2—C3—C9177.20 (16)O2—S1—C12—C174.74 (17)
C1—C2—C3—C91.3 (3)C1—S1—C12—C17119.98 (15)
C2—C3—C4—C51.0 (3)C17—C12—C13—F1177.51 (15)
C9—C3—C4—C5178.50 (17)S1—C12—C13—F14.2 (2)
C3—C4—C5—C60.8 (3)C17—C12—C13—C142.1 (3)
C3—C4—C5—C10179.86 (17)S1—C12—C13—C14175.40 (14)
C4—C5—C6—C71.3 (2)F1—C13—C14—C15179.24 (17)
C10—C5—C6—C7179.72 (16)C12—C13—C14—C150.4 (3)
C5—C6—C7—O1179.85 (15)C13—C14—C15—C160.9 (3)
C5—C6—C7—C20.1 (3)C14—C15—C16—C170.4 (3)
C8—O1—C7—C6179.66 (16)C13—C12—C17—C162.6 (3)
C8—O1—C7—C20.38 (18)S1—C12—C17—C16175.89 (14)
C3—C2—C7—C62.0 (3)C15—C16—C17—C121.4 (3)
C1—C2—C7—C6179.06 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C12–C17 2-fluorophenyl ring, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.423.347 (2)164
C10—H10C···O2ii0.982.423.385 (2)167
C11—H11A···F1iii0.982.543.160 (2)121
C11—H11B···Cg1iv0.982.693.476 (2)138
C15—H15···Cg2v0.952.713.548 (2)147
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x, y1, z; (v) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H15FO2S
Mr302.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.6892 (5), 6.0339 (2), 17.1786 (7)
β (°) 92.741 (2)
V3)1417.32 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.32 × 0.27 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.527, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
13205, 3277, 2665
Rint0.048
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.07
No. of reflections3277
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.43

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C12–C17 2-fluorophenyl ring, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.423.347 (2)164.2
C10—H10C···O2ii0.982.423.385 (2)167.0
C11—H11A···F1iii0.982.543.160 (2)120.9
C11—H11B···Cg1iv0.982.693.476 (2)137.9
C15—H15···Cg2v0.952.713.548 (2)147.1
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x, y1, z; (v) x+2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan City.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o586.  Web of Science CSD CrossRef IUCr Journals
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o3113.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds