[Journal logo]

Volume 69 
Part 6 
Pages o974-o975  
June 2013  

Received 10 May 2013
Accepted 20 May 2013
Online 25 May 2013

Key indicators
Single-crystal X-ray study
T = 298 K
Mean [sigma](C-C) = 0.004 Å
R = 0.060
wR = 0.137
Data-to-parameter ratio = 14.8
Details
Open access

5-(6-Amino-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-1,3-dimethyl-1H-chromeno[2,3-d]pyrimidine-2,4(3H,5H)-dione 3.5-hydrate

aDepartment of Chemistry, National Institute of Technology-Agartala, Pin-799055, Tripura, India
Correspondence e-mail: subrataorg@gmail.com

The title compound, C19H19N5O5·3.5H2O, crystallizes with 3.5 molecules of water in the asymmetric unit, one of which lies on a mirror plane. One of the water molecules links the molecules, forming centrosymmetric dimers. These dimers are then linked through further N-H...O and O-H...O hydrogen bonding, leading to the observed three-dimensional structure.

Related literature

Many chromene derivatives occur in natural products, see: Hatakeyama et al. (1988[Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022-1024.]). For the biological activity of functionalized chromenes, see: Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For the use of 6-amino-uracil derivatives as precursors in the synthesis of biologically significant fused uracils, see: Shaw (1996[Shaw, G. (1996). Compherensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, Vol. 7, pp. 397-429. Oxford: Pergamon Press.]). The fusion of a chromene unit to the uracil ring is found to increase the biological activity, see: Sabry et al. (2011[Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19N5O5·3.5H2O

  • Mr = 460.45

  • Monoclinic, C 2/c

  • a = 29.993 (4) Å

  • b = 7.9105 (6) Å

  • c = 21.458 (3) Å

  • [beta] = 119.860 (16)°

  • V = 4415.3 (10) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 0.11 mm-1

  • T = 298 K

  • 0.32 × 0.12 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.93, Tmax = 1.00

  • 9327 measured reflections

  • 4554 independent reflections

  • 2538 reflections with I > 2[sigma](I)

  • Rint = 0.069

Refinement
  • R[F2 > 2[sigma](F2)] = 0.060

  • wR(F2) = 0.137

  • S = 0.98

  • 4554 reflections

  • 308 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.24 e Å-3

  • [Delta][rho]min = -0.25 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N6-H6A...O6Wi 0.86 2.18 3.009 (3) 161
N6-H6B...O8W 0.86 2.09 2.905 (3) 158
O6W-H6WA...O1ii 0.85 2.01 2.830 (3) 162
O6W-H6WB...O7W 0.85 2.00 2.835 (3) 167
O7W-H7WA...O3iii 0.84 1.94 2.781 (3) 177
O7W-H7WB...O2 0.85 1.93 2.773 (3) 170
O8W-H8WA...O9W 0.85 1.99 2.838 (4) 177
O8W-H8WB...O6Wiv 0.85 2.01 2.840 (3) 164
O9W-H9W...O7W 0.85 1.93 2.772 (3) 170
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z+1]; (iii) -x+1, -y+2, -z+1; (iv) [-x+1, y-1, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX.SOLVE (Bourhis et al., 2013[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2013). In preparation.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2089 ).


Acknowledgements

Financial assistance from the Department of Biotechnology (DBT), Government of India (vide sanction NO BCIL/NER-BPMC/2012.1549) is gratefully acknowledged.

References

Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2013). In preparation.
Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.  [CrossRef]
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [ISI] [CrossRef] [ChemPort] [details]
Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022-1024.
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.  [ISI] [CrossRef] [ChemPort] [PubMed]
Shaw, G. (1996). Compherensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, Vol. 7, pp. 397-429. Oxford: Pergamon Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.  [CSD] [CrossRef] [ChemPort] [details]
Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.  [ChemPort] [PubMed]


Acta Cryst (2013). E69, o974-o975   [ doi:10.1107/S1600536813013986 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.