supplementary materials


hb7060 scheme

Acta Cryst. (2013). E69, m326-m327    [ doi:10.1107/S1600536813012695 ]

catena-Poly[[manganese(III)-bis{[mu]-2-[(2-hydroxyethyl)iminomethyl]-6-methoxyphenolato-[kappa]3O1,N:O2;[kappa]3O2:N,O1}] iodide]

S. R. Petrusenko, O. M. Stetsyuk and I. V. Omelchenko

Abstract top

In the title one-dimensional coordination polymer, {[Mn(C10H12NO3)2]I}n, the potentially tetradentate (O,O,O,N) 2-[(2-hydroxyethyl)iminomethyl]-6-methoxyphenol (H2L) ligands are mono-deprotonated (as HL-) and coordinated by the metal ions in a tridentate chelate-bridging fashion [2.0111112]. The MnIII atom possesses a distorted trans-MnO4N2 octahedral coordination environment. The bridging ligands lead to [010]-chain polymeric cations {[Mn(HL)2]+}n in the crystal. The charge-balancing iodide ions are disordered over two sites in a 0.690 (2):0.310 (2) ratio and a weak O-H...I hydrogen bond occurs. The crystal studied was found to be a racemic twin.

Comment top

Developing the "direct synthesis" approach (Babich et al., 1996; Vinogradova et al., 2002; Makhankova et al., 2002), our research group are now interested in the preparation of manganese-based heterometallic "salen-type" Schiff bases complexes as promising objects for search and production of new materials with useful properties. Synthesis from metal powders as reagents has been recently demonstrated to be an alternative and efficient way to similar Fe/Co complexes (Nesterov et al., 2012; Chygorin et al., 2012). But in some cases instead of heterometallic compounds we can obtain monometallic ones or a mixture of different compounds as more thermodinamically favorable products in selected conditions. Such a case is observed with the investigated system

Mn0 – Fe0 – {3(o-vanillin) – 3(Hea)} – 2NH4I – CH3OH (t=50 0C, in open air),

where o-vanillin = 2-hydroxy-3-methoxybenzaldehyde; Hea = 2-aminoethanol;

from which the new polymeric complex [Mn(HL)2]I (H2L = 2-hydroxyiminomethyl-6-methoxyphenol), (I), was isolated.

The total dissolution of metal powders was observed within 6 h resulting into intensive dark brown solution. The block brown crystalls precipitate after 24 h with 45% yield. Interestingly that the stechiometric system

Mn0 – {2(o-vanillin) – 2(Hea)} – NH4I – CH3OH

produces the same complex, but the dissolution of metal powders is longer (more than 7 h) and the yield is lower (26%).

The {[Mn(HL)2]}n unit (Fig.1) demonstrates the [O4N2] coordination environment with a distorted octahedral geometry around the central atom. The metal assignment and its oxidation state were confirmed by considering coordination bond lengths, existence of Jahn-Teller elongation and bond valence sum calculation [BVS(Mn) = 3.07 (Brown & Altermatt, 1985)].

The one-dimensional polymeric structure of the crystal (Fig. 2) is realised by means of chelate-bridging function of the ligand, [2.0111112] by Harris notation (Coxall et al., 2000), which is firstly observed for H2L.

The disodered iodide anions occupy channels between polymeric cationic chains joining to them through weak O–H···I hydrogen bonds (H···I 2.62 - 2.86 Å, O—H···I 131 - 172°) forming neutral chains along (010) direction (Fig. 2, 3). It is worth noting that in the similar complex {[Mn(HL')2]Cl}n, where H2L'= 2-[(2-hydroxyethyl)iminomethyl]-phenol (Zhang et al., 2005), the polymeric chains interlink with numerous O–H···Cl hydrogen bonds and C–H···π contacts yielding two-dimensional network. This difference can be caused by at least two factors: (1) greater electronegativeness and notably smaller radius of Cl- anions, and (2) absence of methoxy-group, and so additional steric hindrance, in H2L'.

Related literature top

For the related structure of {[Mn(C9H10NO2)2]Cl}n, see: Zhang et al. (2005). For further synthetic details, see: Babich et al. (1996); Vinogradova et al. (2002); Makhankova et al. (2002); Nesterov et al. (2012); Chygorin et al. (2012). For bond-valence sum calculations, see: Brown & Altermatt (1985). For coordination mode notation, see: Coxall et al. (2000).

Experimental top

2-Aminoethanol (0.18 g, 3 mmol) and o-vanillin (0.457 g, 3 mmol) were added to 30 ml of methanol and stirred magnetically for 15 min until the colour of the solution turned in yellow. After manganese powder (0.055 g, 1 mmol), iron powder (0.058 g, 1 mmol) and NH4I (0.29 g, 2 mmol) were added to the solution, the reaction mixture was stirred at 50°C for ca 6 h. Almost total dissolution of metal powders was observed. Dark brown crystals that precipitated after 1 day were collected by filtration and dried in air; yield 45%. Elemental analysis for C20H24I2MnN2O6 (Mr = 570.26). Calcd: Mn, 9.63%. Found: Mn, 9.3%. IR(KBr, cm-1): 3457(b), 3411(w), 3248(b), 3193(w), 2993(w), 2939(w), 2830(w), 1615(s), 1552(m), 1459(s), 1443(s), 1406(m), 1343(m), 1316(s), 1243(s), 1216(m) 1161(w), 1107(w), 1071(m), 1017(m), 980(m), 898(w), 871(m), 789(w), 726(s), 635(m), 599(w), 526(w), 454(w), 417(w).

Refinement top

All H atoms were placed in idealized positions (C–H = 0.93 – 0.97 Å, O–H = 0.86 Å) and constrained to ride on their parent atoms, with Uiso = 1.2Ueq (except Uiso = 1.5Ueq for methyl and hydroxyl groups). It should be noted that the mean value of the |E2-1| is 0.816 and the structure can be solved in both polar (Pca21) and centrosymmetric (Pbca) groups, however, the R1 value in the latter case is consistently higher (ca. 0.24) that in the former (less than 0.10), so the noncentrosymmetric space group is believed to be the correct choice. Flack parameter value (Flack, 1983) of 0.48 (5) was obtained in the final structure factor calculation, indicating a racemic twin. for Futher full-matrix refinement of the Flack parameter slightly improved the agreement index R (from 0.077 to 0.076). Content of the the major component in the refined racemic twin structure is 59 (3)%. Iodine atom was found to be disordered over two sites with with occupancy factors 0.69 and 0.31.

Computing details top

Data collection: CrysAlis CCD (Agilent, 2011); cell refinement: CrysAlis RED (Agilent, 2011); data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with 30% probability ellipsoids for non-H atoms. C—H hydrogen atoms are ommited for clarity. Iodide ion is disodered in two positions I1A and I1B with occupancy ratio 0.69:0.31, respectively.
[Figure 2] Fig. 2. Fragment of chain polymeric structure of (I).
[Figure 3] Fig. 3. Packing of (I) viewed down the (010) direction.
catena-Poly[[manganese(III)-bis{µ-2-[(2-hydroxyethyl)iminomethyl]-6-methoxyphenolato-κ3O1,N:O2;κ3O2:N,O1}] iodide] top
Crystal data top
[Mn(C10H12NO3)2]IF(000) = 1136
Mr = 570.25Dx = 1.626 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 861 reflections
a = 18.880 (2) Åθ = 2.9–32.3°
b = 5.8979 (10) ŵ = 1.93 mm1
c = 20.916 (2) ÅT = 298 K
V = 2329.1 (5) Å3Block, brown
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
4752 independent reflections
Radiation source: Enhance (Mo) X-ray Source2094 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 3.5°
ω scansh = 2610
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 68
Tmin = 0.513, Tmax = 0.699l = 2928
7841 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
4752 reflectionsΔρmax = 1.49 e Å3
282 parametersΔρmin = 0.66 e Å3
1 restraintAbsolute structure: Flack (1983), 1276 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.59 (3)
Crystal data top
[Mn(C10H12NO3)2]IV = 2329.1 (5) Å3
Mr = 570.25Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 18.880 (2) ŵ = 1.93 mm1
b = 5.8979 (10) ÅT = 298 K
c = 20.916 (2) Å0.40 × 0.20 × 0.20 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
4752 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2094 reflections with I > 2σ(I)
Tmin = 0.513, Tmax = 0.699Rint = 0.078
7841 measured reflectionsθmax = 30.0°
Refinement top
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.173Δρmax = 1.49 e Å3
S = 0.92Δρmin = 0.66 e Å3
4752 reflectionsAbsolute structure: Flack (1983), 1276 Friedel pairs
282 parametersFlack parameter: 0.59 (3)
1 restraint
Special details top

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2011). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I1A0.08961 (6)0.43638 (19)0.26350 (5)0.0583 (4)0.690 (2)
I1B0.08839 (17)0.0686 (6)0.20195 (17)0.0752 (12)0.310 (2)
Mn10.00346 (8)0.2483 (4)0.01586 (13)0.0360 (3)
O10.0867 (4)0.3014 (13)0.0471 (4)0.046 (2)
N10.0240 (4)0.0371 (15)0.0905 (5)0.036 (2)
C10.0895 (7)0.0934 (19)0.1467 (5)0.045 (3)
N20.0178 (4)0.4584 (16)0.0605 (4)0.036 (2)
O20.2049 (4)0.5108 (13)0.0732 (4)0.057 (2)
C20.1194 (6)0.2539 (19)0.1020 (6)0.041 (3)
O30.0923 (4)0.1935 (15)0.0153 (4)0.049 (2)
C30.1822 (6)0.354 (3)0.1174 (7)0.058 (4)
O40.2124 (5)0.0167 (19)0.0405 (6)0.095 (4)
C40.2190 (7)0.297 (2)0.1702 (6)0.060 (4)
H40.26330.36030.17820.072*
O50.0455 (4)0.4550 (13)0.0775 (4)0.048 (2)
H50.03370.42080.11580.072*
C50.1889 (7)0.138 (2)0.2134 (6)0.067 (4)
H5A0.21240.10460.25140.081*
O60.0391 (4)0.9640 (12)0.0445 (4)0.047 (2)
H60.04840.98050.08460.071*
C60.1268 (7)0.035 (2)0.2004 (6)0.053 (3)
H6A0.10930.07580.22790.063*
C70.0196 (6)0.000 (2)0.1382 (6)0.042 (3)
H70.00370.09810.17000.050*
C80.2479 (9)0.695 (2)0.0966 (9)0.078 (5)
H8A0.26090.79200.06160.117*
H8B0.29000.63540.11620.117*
H8C0.22160.78070.12750.117*
C90.0945 (6)0.3948 (19)0.1152 (5)0.040 (3)
C100.1217 (6)0.256 (2)0.0695 (6)0.039 (3)
C110.1901 (6)0.1460 (19)0.0850 (6)0.041 (3)
C120.2257 (6)0.200 (2)0.1367 (7)0.056 (4)
H120.26950.13270.14430.067*
C130.1983 (6)0.358 (2)0.1810 (8)0.065 (4)
H130.22460.40190.21650.078*
C140.1321 (7)0.445 (2)0.1705 (6)0.060 (4)
H140.11190.54010.20100.072*
C150.0250 (6)0.496 (2)0.1054 (6)0.048 (3)
H150.01050.60150.13590.058*
C160.2537 (8)0.190 (2)0.0618 (7)0.065 (4)
H16A0.26540.28800.02670.098*
H16B0.22850.27460.09370.098*
H16C0.29640.12980.08000.098*
C170.0928 (5)0.0769 (15)0.0985 (7)0.049 (3)
H17A0.13100.02490.08690.059*
H17B0.09930.12250.14270.059*
C180.0929 (6)0.2899 (19)0.0539 (6)0.044 (3)
H18A0.14030.35290.05170.053*
H18B0.07890.24580.01100.053*
C190.0885 (6)0.7926 (19)0.0222 (7)0.048 (4)
H19A0.07690.75210.02150.058*
H19B0.13600.85510.02240.058*
C200.0869 (5)0.5841 (19)0.0628 (5)0.040 (3)
H20A0.12440.48290.04910.048*
H20B0.09660.62670.10680.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I1A0.0828 (7)0.0563 (6)0.0359 (5)0.0091 (7)0.0043 (9)0.0054 (10)
I1B0.087 (2)0.0596 (19)0.079 (2)0.0057 (18)0.011 (2)0.002 (2)
Mn10.0441 (6)0.0298 (5)0.0340 (6)0.0027 (6)0.0010 (7)0.0055 (6)
O10.054 (5)0.049 (5)0.036 (4)0.008 (4)0.007 (5)0.010 (4)
N10.039 (5)0.027 (5)0.042 (5)0.009 (4)0.005 (5)0.015 (5)
C10.070 (8)0.034 (6)0.031 (5)0.014 (6)0.010 (7)0.000 (5)
N20.038 (5)0.038 (5)0.033 (5)0.017 (4)0.003 (4)0.014 (5)
O20.079 (5)0.051 (5)0.040 (5)0.039 (4)0.013 (5)0.008 (5)
C20.044 (6)0.038 (7)0.043 (7)0.003 (5)0.005 (6)0.007 (6)
O30.056 (5)0.054 (6)0.038 (5)0.011 (4)0.014 (5)0.015 (5)
C30.044 (7)0.087 (10)0.044 (7)0.012 (7)0.023 (6)0.027 (8)
O40.075 (6)0.146 (11)0.065 (7)0.057 (7)0.009 (6)0.006 (8)
C40.069 (8)0.077 (11)0.034 (7)0.018 (8)0.011 (7)0.013 (8)
O50.069 (5)0.043 (5)0.033 (4)0.011 (4)0.010 (4)0.008 (5)
C50.097 (10)0.076 (10)0.028 (6)0.005 (9)0.020 (7)0.011 (7)
O60.069 (5)0.030 (4)0.043 (4)0.010 (4)0.009 (5)0.006 (5)
C60.076 (8)0.048 (7)0.035 (6)0.004 (7)0.008 (7)0.003 (7)
C70.054 (7)0.028 (7)0.044 (7)0.002 (5)0.008 (6)0.001 (6)
C80.085 (8)0.043 (8)0.106 (15)0.012 (7)0.006 (11)0.004 (10)
C90.045 (6)0.041 (7)0.035 (5)0.008 (5)0.003 (6)0.010 (6)
C100.051 (7)0.042 (7)0.025 (5)0.002 (5)0.003 (6)0.004 (6)
C110.040 (6)0.041 (7)0.041 (6)0.011 (5)0.014 (6)0.013 (6)
C120.048 (7)0.061 (10)0.057 (9)0.006 (7)0.009 (7)0.002 (9)
C130.058 (7)0.065 (9)0.071 (10)0.002 (7)0.036 (8)0.018 (8)
C140.078 (8)0.062 (9)0.040 (7)0.020 (7)0.007 (7)0.004 (8)
C150.063 (8)0.042 (8)0.039 (6)0.000 (6)0.022 (7)0.007 (6)
C160.067 (8)0.069 (10)0.059 (9)0.016 (7)0.010 (8)0.016 (9)
C170.029 (5)0.016 (5)0.102 (10)0.005 (4)0.018 (7)0.016 (7)
C180.046 (6)0.049 (8)0.037 (6)0.010 (6)0.010 (6)0.011 (6)
C190.048 (7)0.025 (7)0.072 (10)0.008 (5)0.006 (7)0.010 (7)
C200.042 (5)0.048 (7)0.030 (5)0.010 (5)0.018 (6)0.005 (6)
Geometric parameters (Å, º) top
Mn1—O31.829 (8)O6—H60.8625
Mn1—O11.849 (8)C6—H6A0.9300
Mn1—N12.035 (10)C7—H70.9300
Mn1—N22.061 (9)C8—H8A0.9600
Mn1—O6i2.247 (8)C8—H8B0.9600
Mn1—O5ii2.315 (8)C8—H8C0.9600
O1—C21.335 (14)C9—C101.358 (15)
N1—C71.312 (14)C9—C141.391 (16)
N1—C171.473 (13)C9—C151.457 (17)
C1—C61.371 (16)C10—C111.482 (16)
C1—C71.443 (16)C11—C121.312 (17)
C1—C21.445 (16)C12—C131.414 (19)
N2—C151.259 (15)C12—H120.9300
N2—C201.502 (13)C13—C141.369 (16)
O2—C31.376 (17)C13—H130.9300
O2—C81.442 (14)C14—H140.9300
C2—C31.363 (16)C15—H150.9300
O3—C101.315 (13)C16—H16A0.9600
C3—C41.349 (18)C16—H16B0.9600
O4—C161.361 (14)C16—H16C0.9600
O4—C111.401 (14)C17—C181.566 (16)
C4—C51.421 (18)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
O5—C181.412 (12)C18—H18A0.9700
O5—Mn1i2.315 (8)C18—H18B0.9700
O5—H50.8547C19—C201.496 (17)
C5—C61.348 (17)C19—H19A0.9700
C5—H5A0.9300C19—H19B0.9700
O6—C191.453 (13)C20—H20A0.9700
O6—Mn1ii2.247 (8)C20—H20B0.9700
O3—Mn1—O1179.5 (5)O2—C8—H8C109.5
O3—Mn1—N189.5 (4)H8A—C8—H8C109.5
O1—Mn1—N190.5 (3)H8B—C8—H8C109.5
O3—Mn1—N290.5 (4)C10—C9—C14121.4 (11)
O1—Mn1—N289.6 (3)C10—C9—C15119.3 (10)
N1—Mn1—N2179.2 (5)C14—C9—C15119.2 (11)
O3—Mn1—O6i89.8 (4)O3—C10—C9128.1 (11)
O1—Mn1—O6i89.8 (3)O3—C10—C11115.6 (10)
N1—Mn1—O6i92.4 (3)C9—C10—C11116.1 (11)
N2—Mn1—O6i86.8 (3)C12—C11—O4124.0 (10)
O3—Mn1—O5ii91.0 (4)C12—C11—C10121.4 (11)
O1—Mn1—O5ii89.5 (3)O4—C11—C10114.6 (10)
N1—Mn1—O5ii88.3 (3)C11—C12—C13120.8 (11)
N2—Mn1—O5ii92.5 (4)C11—C12—H12119.6
O6i—Mn1—O5ii179.0 (4)C13—C12—H12119.6
C2—O1—Mn1134.0 (7)C14—C13—C12118.6 (12)
C7—N1—C17113.0 (10)C14—C13—H13120.7
C7—N1—Mn1124.6 (7)C12—C13—H13120.7
C17—N1—Mn1122.3 (8)C13—C14—C9121.2 (13)
C6—C1—C7118.3 (12)C13—C14—H14119.4
C6—C1—C2119.7 (12)C9—C14—H14119.4
C7—C1—C2121.9 (11)N2—C15—C9127.5 (11)
C15—N2—C20116.4 (9)N2—C15—H15116.3
C15—N2—Mn1124.1 (7)C9—C15—H15116.3
C20—N2—Mn1119.4 (7)O4—C16—H16A109.5
C3—O2—C8117.0 (11)O4—C16—H16B109.5
O1—C2—C3121.0 (12)H16A—C16—H16B109.5
O1—C2—C1120.9 (10)O4—C16—H16C109.5
C3—C2—C1118.1 (12)H16A—C16—H16C109.5
C10—O3—Mn1130.1 (8)H16B—C16—H16C109.5
C4—C3—C2122.2 (15)N1—C17—C18107.4 (9)
C4—C3—O2123.9 (11)N1—C17—H17A110.2
C2—C3—O2113.8 (11)C18—C17—H17A110.2
C16—O4—C11118.0 (12)N1—C17—H17B110.2
C3—C4—C5118.7 (13)C18—C17—H17B110.2
C3—C4—H4120.7H17A—C17—H17B108.5
C5—C4—H4120.7O5—C18—C17110.1 (9)
C18—O5—Mn1i122.9 (7)O5—C18—H18A109.6
C18—O5—H5109.4C17—C18—H18A109.6
Mn1i—O5—H5127.6O5—C18—H18B109.6
C6—C5—C4121.1 (12)C17—C18—H18B109.6
C6—C5—H5A119.4H18A—C18—H18B108.2
C4—C5—H5A119.4O6—C19—C20112.1 (10)
C19—O6—Mn1ii124.6 (8)O6—C19—H19A109.2
C19—O6—H6105.1C20—C19—H19A109.2
Mn1ii—O6—H6122.3O6—C19—H19B109.2
C5—C6—C1119.9 (13)C20—C19—H19B109.2
C5—C6—H6A120.0H19A—C19—H19B107.9
C1—C6—H6A120.0C19—C20—N2113.9 (9)
N1—C7—C1127.1 (11)C19—C20—H20A108.8
N1—C7—H7116.5N2—C20—H20A108.8
C1—C7—H7116.5C19—C20—H20B108.8
O2—C8—H8A109.5N2—C20—H20B108.8
O2—C8—H8B109.5H20A—C20—H20B107.7
H8A—C8—H8B109.5
O3—Mn1—O1—C295 (59)C8—O2—C3—C2151.0 (12)
N1—Mn1—O1—C210.8 (10)C2—C3—C4—C54 (2)
N2—Mn1—O1—C2170.0 (11)O2—C3—C4—C5177.9 (11)
O6i—Mn1—O1—C2103.2 (10)C3—C4—C5—C64 (2)
O5ii—Mn1—O1—C277.5 (10)C4—C5—C6—C14 (2)
O3—Mn1—N1—C7176.6 (9)C7—C1—C6—C5172.8 (12)
O1—Mn1—N1—C73.9 (9)C2—C1—C6—C54.3 (19)
N2—Mn1—N1—C796 (30)C17—N1—C7—C1177.0 (11)
O6i—Mn1—N1—C793.7 (8)Mn1—N1—C7—C11.4 (16)
O5ii—Mn1—N1—C785.6 (9)C6—C1—C7—N1179.4 (12)
O3—Mn1—N1—C171.3 (8)C2—C1—C7—N12.3 (18)
O1—Mn1—N1—C17179.1 (8)Mn1—O3—C10—C95.3 (18)
N2—Mn1—N1—C1789 (30)Mn1—O3—C10—C11168.8 (8)
O6i—Mn1—N1—C1791.1 (8)C14—C9—C10—O3179.7 (12)
O5ii—Mn1—N1—C1789.7 (8)C15—C9—C10—O31.5 (18)
O3—Mn1—N2—C151.5 (10)C14—C9—C10—C115.7 (17)
O1—Mn1—N2—C15178.0 (10)C15—C9—C10—C11175.6 (11)
N1—Mn1—N2—C1586 (30)C16—O4—C11—C1228.4 (19)
O6i—Mn1—N2—C1588.2 (10)C16—O4—C11—C10151.5 (12)
O5ii—Mn1—N2—C1592.5 (10)O3—C10—C11—C12177.8 (11)
O3—Mn1—N2—C20175.9 (8)C9—C10—C11—C127.4 (18)
O1—Mn1—N2—C204.6 (8)O3—C10—C11—O42.3 (15)
N1—Mn1—N2—C2097 (30)C9—C10—C11—O4172.5 (10)
O6i—Mn1—N2—C2094.4 (8)O4—C11—C12—C13177.0 (12)
O5ii—Mn1—N2—C2084.8 (8)C10—C11—C12—C133 (2)
Mn1—O1—C2—C3166.4 (9)C11—C12—C13—C143 (2)
Mn1—O1—C2—C114.1 (16)C12—C13—C14—C95 (2)
C6—C1—C2—O1175.1 (11)C10—C9—C14—C130 (2)
C7—C1—C2—O17.9 (17)C15—C9—C14—C13178.4 (13)
C6—C1—C2—C34.5 (17)C20—N2—C15—C9178.8 (11)
C7—C1—C2—C3172.5 (12)Mn1—N2—C15—C93.7 (18)
O1—Mn1—O3—C1090 (59)C10—C9—C15—N26.1 (19)
N1—Mn1—O3—C10173.4 (10)C14—C9—C15—N2175.1 (13)
N2—Mn1—O3—C105.8 (10)C7—N1—C17—C18103.3 (12)
O6i—Mn1—O3—C1080.9 (10)Mn1—N1—C17—C1881.0 (9)
O5ii—Mn1—O3—C1098.4 (10)Mn1i—O5—C18—C17162.6 (6)
O1—C2—C3—C4175.0 (12)N1—C17—C18—O570.0 (12)
C1—C2—C3—C44.6 (19)Mn1ii—O6—C19—C20159.0 (7)
O1—C2—C3—O22.9 (17)O6—C19—C20—N265.1 (13)
C1—C2—C3—O2177.5 (11)C15—N2—C20—C1997.8 (13)
C8—O2—C3—C431.1 (19)Mn1—N2—C20—C1979.8 (11)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···I1Aiii0.862.863.488 (8)131
Symmetry code: (iii) x, y+1, z1/2.
Selected bond lengths (Å) top
Mn1—O31.829 (8)Mn1—N22.061 (9)
Mn1—O11.849 (8)Mn1—O6i2.247 (8)
Mn1—N12.035 (10)Mn1—O5ii2.315 (8)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···I1Aiii0.862.863.488 (8)131
Symmetry code: (iii) x, y+1, z1/2.
Acknowledgements top

This work has been partially supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).

references
References top

Agilent (2011). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.

Babich, O. A., Kokozay, V. N. & Pavlenko, V. A. (1996). Polyhedron, 15, 2727–2731.

Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.

Chygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boca, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386–396.

Coxall, R. A., Harris, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & Winpenny, R. E. P. (2000). J. Chem. Soc. Dalton Trans. pp. 2349–2356.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259.

Nesterov, D. S., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Boca, R., Kozlov, Y. N., Shul'pina, L. S., Jezierska, J., Ozarowski, A., Pombeiro, A. L. J. & Shul'pin, G. B. (2012). Inorg. Chem. 51, 9110–9122.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248–4252.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Zhang, L.-F., Ni, Z.-H., Zong, Z.-M., Wei, X.-Y., Ge, C.-H. & Kou, H.-Z. (2005). Acta Cryst. C61, m542–m544.