supplementary materials


hb7074 scheme

Acta Cryst. (2013). E69, o863-o864    [ doi:10.1107/S1600536813012257 ]

N,N-Diethyl-2-hydroxyethanaminium 5-(2,4-dinitrophenyl)barbiturate sesquihydrate

G. Mangaiyarkarasi and D. Kalaivani

Abstract top

In the title hydrated molecular salt, C6H16NO+·C10H5N4O7-·1.5H2O [systematic name: N,N-diethyl-2-hydroxyethanaminium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate sesquihydrate], the dihedral angle between the six-membered rings in the anion is 37.66 (11)°. The nitro groups ortho and para to the ring junction are rotated from their attached ring by 40.8 (3) and 23.5 (3)°, respectively. The ethanol group is disordered over two of the `arms' of the cation in a statistical ratio. In the crystal, [010] chains of anions occur, linked by N-H...O and O-H...O hydrogen bonds, which generate R22(8) loops. Further N-H...O and O-H...O hydrogen bonds link the components into a three-dimensional network. One of the water O atoms lies near an inversion centre and is 50% occupied.

Comment top

Good crystallinity of the title barbiturate (pyrimidine derivative) and the biological effects of the related barbiturates (Kalaivani et al.,2008; Kalaivani & Buvaneswari,2010) necessitate us to subject the molecular salt of the present investigation for single-crystal X-ray analysis. The crystal structures of two different barbiturates with N,N-diethyl-2-hydroxyethanaminium cation have been reported by us recently (Buvaneswari & Kalaivani,2011; Babykala & Kalaivani,2012). No disorder has been observed in their cation moieties. The X-ray results of the molecular salt of present interest imply that the asymmetric unit consists of N,N-Diethyl-2-hydroxyethanaminium cation, 5-(2,4-dinitrophenyl)barbiturate anion and 1.5 molecules of water (Scheme).Fig.1 is the ORTEP diagram of the title molecule with 30% probability displacement ellipsoids. Disorder has been noticed in the ethanol group of diethylethanolammonium cation at two positions with equal probability (50% occupancy). The crystal structure features a number of N—H···O and O—H···O hydrogen bonds (Table.1) and these hydrogen bond interactions extend three dimensionally (Fig.2). O11 of water molecule is also disordered with its symmetry related position (sym:-x + 1,-y,-z + 2).The hydrogen atoms of O11 could not be located.In the anion, the dinitrophenyl ring and the barbiturate ring are not planar and the dihedral angle between them is 37.65 (0.09)°.The nitro groups attached to C3 and C1 atoms of phenyl ring make dihedral angles,23.51(0.15°) and 39.75(0.11°) respectively with the phenylplane. The inversion related barbiturate residues are linked through R22(8) motifs.

Related literature top

For related barbiturates, see: Kalaivani et al. (2008); Kalaivani & Buvaneswari (2010); Buvaneswari & Kalaivani (2011); Babykala & Kalaivani (2012).

Experimental top

1-Chloro-2,4-dinitrobenzene(2.02 g, 0.01 mol) was dissolved in 20 ml of ethanol and mixed with barbituric acid(1.2 g, 0.01 mol) dissolved in 30 ml of ethanol. To this mixture diethylethanolamine (5.85 g, 0.05 mol) was added,the red coloured solution obtained was shaken well for 3 h and kept as such at 25° C. Dark shiny maroon red crystals were deposited from the solution after 4 weeks. The crystals were washed with 5 ml of ethanol followed by 30 ml of ether, powdered well and was further washed with 40 ml of dry ether to remove unreacted reactants.The pure crystals thus obtained were recrystallized from hot ethanol(yield:85%; m.pt; 511 K). Red blocks were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The initial refinement of the structure showed abnormal displacement ellipsoids for two chains of diethylethanolammonium ion, soon it could be identified as disorder arising from the ethanol and ethyl group exchanging positions. The disordered components are suitably positioned and the occupancies refined, keeping the sum of occupancies as 1. As the occupancies convulsed to 50%, their values were fixed as 0.5 towards the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP diagram of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing view of title compound.
N,N-Diethyl-2-hydroxyethanaminium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate sesquihydrate top
Crystal data top
C6H16NO+·C10H5N4O7·1.5H2OF(000) = 924
Mr = 438.40Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6003 (5) ÅCell parameters from 5746 reflections
b = 11.6568 (6) Åθ = 2.1–24.1°
c = 18.1993 (9) ŵ = 0.12 mm1
β = 98.066 (3)°T = 293 K
V = 2016.51 (18) Å3Block, red
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3219 independent reflections
Radiation source: fine-focus sealed tube2353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and φ scanθmax = 24.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1110
Tmin = 0.948, Tmax = 0.979k = 1313
16207 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0518P)2 + 1.3181P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3219 reflectionsΔρmax = 0.34 e Å3
341 parametersΔρmin = 0.26 e Å3
49 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (12)
Crystal data top
C6H16NO+·C10H5N4O7·1.5H2OV = 2016.51 (18) Å3
Mr = 438.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6003 (5) ŵ = 0.12 mm1
b = 11.6568 (6) ÅT = 293 K
c = 18.1993 (9) Å0.30 × 0.20 × 0.20 mm
β = 98.066 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3219 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2353 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.979Rint = 0.033
16207 measured reflectionsθmax = 24.2°
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131Δρmax = 0.34 e Å3
S = 1.09Δρmin = 0.26 e Å3
3219 reflectionsAbsolute structure: ?
341 parametersFlack parameter: ?
49 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2628 (2)0.0366 (2)0.54157 (13)0.0329 (6)
C20.2250 (3)0.0267 (2)0.46611 (13)0.0391 (6)
H20.14970.01930.44650.047*
C30.3010 (3)0.0862 (2)0.42078 (13)0.0382 (6)
C40.4145 (3)0.1532 (2)0.44884 (13)0.0392 (6)
H40.46290.19590.41740.047*
C50.4544 (3)0.1556 (2)0.52411 (13)0.0356 (6)
H50.53390.19750.54290.043*
C60.3811 (2)0.09788 (18)0.57400 (12)0.0302 (5)
C70.4339 (2)0.09933 (19)0.65315 (12)0.0307 (5)
C80.4299 (2)0.0016 (2)0.69591 (12)0.0320 (5)
C90.5512 (3)0.0971 (2)0.80407 (13)0.0415 (6)
C100.4982 (2)0.1991 (2)0.68671 (12)0.0333 (6)
C110.055 (3)0.421 (2)0.6323 (12)0.123 (6)0.50
H11A0.09310.42830.68440.148*0.50
H11B0.05820.49640.61000.148*0.50
C120.148 (2)0.341 (2)0.5957 (12)0.123 (6)0.50
H12A0.21710.38790.57570.148*0.50
H12B0.19870.29410.63460.148*0.50
O80.0978 (6)0.2768 (6)0.5468 (3)0.0968 (18)0.50
H80.08040.31260.50780.145*0.50
C11'0.0599 (11)0.4204 (8)0.6337 (5)0.0340 (19)0.50
H11C0.06870.48510.60120.041*0.50
H11D0.09160.44470.68420.041*0.50
C12'0.1500 (14)0.3260 (12)0.6142 (7)0.058 (2)0.50
H12C0.14630.26360.64830.087*0.50
H12D0.24520.35260.61690.087*0.50
H12E0.11730.30020.56470.087*0.50
C130.1176 (4)0.2726 (3)0.66133 (19)0.0675 (9)
H13A0.06930.21320.63740.081*
H13B0.21760.25620.65170.081*
C140.0709 (5)0.2668 (4)0.7436 (2)0.0950 (13)
H14A0.02970.27320.75350.142*
H14B0.09960.19480.76240.142*
H14C0.11300.32850.76760.142*
C150.169 (2)0.4779 (19)0.6581 (13)0.125 (6)0.50
H15A0.12660.48820.70930.149*0.50
H15B0.26390.45050.65900.149*0.50
C160.179 (3)0.5919 (19)0.6233 (11)0.120 (6)0.50
H16A0.25290.63640.64120.144*0.50
H16B0.09100.63300.63470.144*0.50
O90.2118 (8)0.5734 (6)0.5442 (3)0.109 (2)0.50
H90.28770.54050.53510.164*0.50
C15'0.1878 (13)0.4742 (14)0.6532 (12)0.073 (4)0.50
H15C0.28050.44120.65360.088*0.50
H15D0.15170.49770.70340.088*0.50
C16'0.198 (2)0.5752 (15)0.6036 (11)0.104 (6)0.50
H16C0.10600.59720.59450.156*0.50
H16D0.24090.63760.62670.156*0.50
H16E0.25500.55630.55750.156*0.50
N10.2581 (2)0.0802 (2)0.34106 (12)0.0495 (6)
N20.1609 (2)0.01230 (19)0.58625 (12)0.0427 (5)
N30.4909 (2)0.00326 (16)0.76952 (10)0.0392 (5)
H30.49020.05850.79530.047*
N40.5523 (2)0.19167 (17)0.76131 (10)0.0397 (5)
H4A0.58980.25260.78220.048*
N50.0911 (3)0.3855 (2)0.62698 (15)0.0531 (6)
O10.37759 (18)0.09499 (13)0.67247 (9)0.0400 (4)
O20.5996 (3)0.09640 (17)0.87033 (10)0.0673 (7)
O30.50875 (19)0.29377 (14)0.65590 (9)0.0432 (5)
O40.2933 (2)0.1579 (2)0.30267 (10)0.0642 (6)
O50.1890 (3)0.0026 (2)0.31603 (11)0.0756 (7)
O60.1012 (2)0.10192 (18)0.56472 (12)0.0613 (6)
O70.1327 (2)0.04142 (17)0.63940 (11)0.0542 (5)
O100.7928 (4)0.1814 (3)0.98317 (18)0.1345 (15)
O110.5047 (15)0.0413 (8)0.9782 (6)0.193 (5)0.50
H5A0.126 (4)0.376 (3)0.574 (2)0.079 (10)*
H10B0.744 (5)0.145 (4)0.944 (2)0.16 (2)*
H10A0.818 (6)0.251 (3)0.969 (3)0.19 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0335 (13)0.0302 (13)0.0342 (13)0.0035 (11)0.0017 (10)0.0016 (10)
C20.0345 (13)0.0388 (14)0.0408 (14)0.0048 (11)0.0057 (11)0.0061 (11)
C30.0418 (14)0.0416 (15)0.0289 (13)0.0114 (12)0.0029 (11)0.0019 (11)
C40.0476 (15)0.0373 (14)0.0327 (14)0.0037 (12)0.0061 (12)0.0011 (11)
C50.0407 (14)0.0325 (13)0.0325 (13)0.0009 (11)0.0009 (11)0.0012 (11)
C60.0355 (13)0.0228 (12)0.0313 (12)0.0077 (10)0.0013 (10)0.0021 (10)
C70.0376 (13)0.0249 (12)0.0286 (12)0.0022 (10)0.0015 (10)0.0013 (10)
C80.0364 (13)0.0295 (13)0.0295 (12)0.0028 (11)0.0024 (10)0.0023 (10)
C90.0589 (17)0.0327 (14)0.0303 (14)0.0006 (13)0.0032 (12)0.0019 (11)
C100.0402 (14)0.0280 (13)0.0314 (13)0.0021 (11)0.0042 (11)0.0022 (10)
C110.117 (12)0.123 (13)0.123 (13)0.008 (10)0.003 (10)0.002 (10)
C120.108 (11)0.119 (12)0.136 (12)0.011 (8)0.005 (9)0.008 (9)
O80.089 (4)0.126 (5)0.073 (3)0.028 (3)0.004 (3)0.028 (3)
C11'0.035 (4)0.034 (4)0.030 (4)0.007 (4)0.003 (3)0.000 (3)
C12'0.039 (4)0.069 (6)0.062 (5)0.011 (4)0.004 (4)0.002 (4)
C130.066 (2)0.058 (2)0.075 (2)0.0106 (16)0.0018 (17)0.0037 (17)
C140.111 (3)0.090 (3)0.077 (3)0.028 (2)0.008 (2)0.026 (2)
C150.193 (13)0.101 (11)0.076 (9)0.043 (10)0.007 (9)0.014 (8)
C160.189 (12)0.085 (10)0.079 (7)0.042 (8)0.002 (7)0.018 (6)
O90.161 (7)0.092 (4)0.070 (4)0.037 (4)0.001 (4)0.002 (4)
C15'0.055 (5)0.061 (7)0.110 (11)0.024 (5)0.037 (5)0.004 (7)
C16'0.104 (8)0.058 (7)0.151 (17)0.039 (6)0.019 (10)0.007 (10)
N10.0520 (14)0.0595 (16)0.0343 (13)0.0112 (13)0.0036 (11)0.0041 (12)
N20.0382 (12)0.0411 (13)0.0472 (13)0.0017 (11)0.0006 (10)0.0016 (11)
N30.0602 (14)0.0265 (11)0.0284 (11)0.0010 (10)0.0029 (9)0.0030 (9)
N40.0573 (14)0.0272 (11)0.0312 (11)0.0047 (10)0.0051 (10)0.0048 (9)
N50.0562 (16)0.0510 (15)0.0500 (15)0.0065 (12)0.0001 (12)0.0067 (12)
O10.0543 (11)0.0248 (9)0.0376 (10)0.0029 (8)0.0053 (8)0.0010 (7)
O20.1120 (18)0.0475 (12)0.0334 (11)0.0130 (12)0.0207 (11)0.0022 (9)
O30.0687 (12)0.0263 (9)0.0327 (9)0.0060 (8)0.0009 (8)0.0006 (7)
O40.0747 (15)0.0790 (16)0.0362 (11)0.0055 (12)0.0016 (10)0.0101 (11)
O50.0957 (18)0.0804 (16)0.0435 (12)0.0150 (14)0.0150 (11)0.0126 (11)
O60.0528 (12)0.0529 (13)0.0769 (15)0.0191 (10)0.0051 (10)0.0075 (11)
O70.0551 (12)0.0581 (13)0.0524 (12)0.0048 (10)0.0185 (9)0.0030 (10)
O100.173 (3)0.106 (2)0.097 (2)0.064 (2)0.076 (2)0.0379 (19)
O110.262 (11)0.162 (11)0.153 (10)0.096 (10)0.021 (9)0.020 (6)
Geometric parameters (Å, º) top
C1—C21.375 (3)C12'—H12D0.9600
C1—C61.400 (3)C12'—H12E0.9600
C1—N21.472 (3)C13—N51.495 (4)
C2—C31.366 (4)C13—C141.504 (5)
C2—H20.9300C13—H13A0.9700
C3—C41.379 (4)C13—H13B0.9700
C3—N11.453 (3)C14—H14A0.9600
C4—C51.370 (3)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.397 (3)C15—N51.47 (2)
C5—H50.9300C15—C161.470 (13)
C6—C71.458 (3)C15—H15A0.9700
C7—C81.414 (3)C15—H15B0.9700
C7—C101.415 (3)C16—O91.44 (2)
C8—O11.248 (3)C16—H16A0.9700
C8—N31.386 (3)C16—H16B0.9700
C9—O21.230 (3)O9—H90.8200
C9—N41.350 (3)C15'—C16'1.478 (12)
C9—N31.351 (3)C15'—N51.512 (15)
C10—O31.248 (3)C15'—H15C0.9700
C10—N41.387 (3)C15'—H15D0.9700
C11—N51.45 (2)C16'—H16C0.9600
C11—C121.509 (13)C16'—H16D0.9600
C11—H11A0.9700C16'—H16E0.9600
C11—H11B0.9700N1—O41.220 (3)
C12—O81.21 (2)N1—O51.223 (3)
C12—H12A0.9700N2—O71.214 (3)
C12—H12B0.9700N2—O61.229 (3)
O8—H80.8200N3—H30.8600
C11'—C12'1.474 (10)N4—H4A0.8600
C11'—N51.493 (11)N5—H5A0.97 (4)
C11'—H11C0.9700O10—H10B0.903 (19)
C11'—H11D0.9700O10—H10A0.89 (2)
C12'—H12C0.9600O11—O11i1.260 (18)
C2—C1—C6123.3 (2)H13A—C13—H13B107.6
C2—C1—N2114.6 (2)C13—C14—H14A109.5
C6—C1—N2121.8 (2)C13—C14—H14B109.5
C3—C2—C1118.2 (2)H14A—C14—H14B109.5
C3—C2—H2120.9C13—C14—H14C109.5
C1—C2—H2120.9H14A—C14—H14C109.5
C2—C3—C4121.7 (2)H14B—C14—H14C109.5
C2—C3—N1118.5 (2)N5—C15—C16120.3 (17)
C4—C3—N1119.7 (2)N5—C15—H15A107.2
C5—C4—C3118.5 (2)C16—C15—H15A107.2
C5—C4—H4120.8N5—C15—H15B107.2
C3—C4—H4120.8C16—C15—H15B107.2
C4—C5—C6123.0 (2)H15A—C15—H15B106.9
C4—C5—H5118.5O9—C16—C15106.7 (16)
C6—C5—H5118.5O9—C16—H16A110.4
C5—C6—C1115.1 (2)C15—C16—H16A110.4
C5—C6—C7120.0 (2)O9—C16—H16B110.4
C1—C6—C7124.8 (2)C15—C16—H16B110.4
C8—C7—C10119.4 (2)H16A—C16—H16B108.6
C8—C7—C6120.1 (2)C16—O9—H9109.5
C10—C7—C6120.4 (2)C16'—C15'—N5110.1 (12)
O1—C8—N3117.5 (2)C16'—C15'—H15C109.6
O1—C8—C7125.3 (2)N5—C15'—H15C109.6
N3—C8—C7117.2 (2)C16'—C15'—H15D109.6
O2—C9—N4122.5 (2)N5—C15'—H15D109.6
O2—C9—N3122.0 (2)H15C—C15'—H15D108.2
N4—C9—N3115.5 (2)C15'—C16'—H16C109.5
O3—C10—N4116.9 (2)C15'—C16'—H16D109.5
O3—C10—C7126.2 (2)H16C—C16'—H16D109.5
N4—C10—C7116.9 (2)C15'—C16'—H16E109.5
N5—C11—C12114.7 (18)H16C—C16'—H16E109.5
N5—C11—H11A108.6H16D—C16'—H16E109.5
C12—C11—H11A108.6O4—N1—O5123.5 (2)
N5—C11—H11B108.6O4—N1—C3118.3 (2)
C12—C11—H11B108.6O5—N1—C3118.2 (2)
H11A—C11—H11B107.6O7—N2—O6123.1 (2)
O8—C12—C11121 (2)O7—N2—C1118.7 (2)
O8—C12—H12A107.2O6—N2—C1118.0 (2)
C11—C12—H12A107.2C9—N3—C8125.4 (2)
O8—C12—H12B107.2C9—N3—H3117.3
C11—C12—H12B107.2C8—N3—H3117.3
H12A—C12—H12B106.8C9—N4—C10125.7 (2)
C12—O8—H8109.5C9—N4—H4A117.2
C12'—C11'—N5111.9 (9)C10—N4—H4A117.2
C12'—C11'—H11C109.2C11—N5—C15107.6 (13)
N5—C11'—H11C109.2C11—N5—C11'1.2 (13)
C12'—C11'—H11D109.2C15—N5—C11'108.0 (10)
N5—C11'—H11D109.2C11—N5—C13116.3 (10)
H11C—C11'—H11D107.9C15—N5—C13111.0 (9)
C11'—C12'—H12C109.5C11'—N5—C13115.2 (4)
C11'—C12'—H12D109.5C11—N5—C15'114.4 (11)
H12C—C12'—H12D109.5C15—N5—C15'7.4 (15)
C11'—C12'—H12E109.5C11'—N5—C15'114.9 (7)
H12C—C12'—H12E109.5C13—N5—C15'108.8 (6)
H12D—C12'—H12E109.5C11—N5—H5A107 (2)
N5—C13—C14114.3 (3)C15—N5—H5A110 (2)
N5—C13—H13A108.7C11'—N5—H5A108 (2)
C14—C13—H13A108.7C13—N5—H5A105 (2)
N5—C13—H13B108.7C15'—N5—H5A104 (2)
C14—C13—H13B108.7H10B—O10—H10A109 (3)
C6—C1—C2—C34.7 (4)C6—C1—N2—O737.2 (3)
N2—C1—C2—C3169.2 (2)C2—C1—N2—O638.1 (3)
C1—C2—C3—C41.2 (4)C6—C1—N2—O6147.8 (2)
C1—C2—C3—N1177.4 (2)O2—C9—N3—C8177.7 (3)
C2—C3—C4—C52.7 (4)N4—C9—N3—C81.1 (4)
N1—C3—C4—C5178.7 (2)O1—C8—N3—C9179.5 (2)
C3—C4—C5—C63.4 (4)C7—C8—N3—C91.3 (4)
C4—C5—C6—C10.1 (3)O2—C9—N4—C10179.1 (3)
C4—C5—C6—C7176.8 (2)N3—C9—N4—C100.3 (4)
C2—C1—C6—C54.1 (3)O3—C10—N4—C9179.9 (2)
N2—C1—C6—C5169.4 (2)C7—C10—N4—C91.4 (4)
C2—C1—C6—C7172.5 (2)C12—C11—N5—C15174.2 (17)
N2—C1—C6—C714.1 (3)C12—C11—N5—C11'76 (62)
C5—C6—C7—C8138.6 (2)C12—C11—N5—C1360.6 (19)
C1—C6—C7—C837.7 (3)C12—C11—N5—C15'171.2 (15)
C5—C6—C7—C1036.9 (3)C16—C15—N5—C1163 (2)
C1—C6—C7—C10146.7 (2)C16—C15—N5—C11'64 (2)
C10—C7—C8—O1179.2 (2)C16—C15—N5—C13168.7 (16)
C6—C7—C8—O13.6 (4)C16—C15—N5—C15'95 (12)
C10—C7—C8—N30.1 (3)C12'—C11'—N5—C11118 (62)
C6—C7—C8—N3175.5 (2)C12'—C11'—N5—C15171.4 (11)
C8—C7—C10—O3179.7 (2)C12'—C11'—N5—C1346.7 (8)
C6—C7—C10—O34.7 (4)C12'—C11'—N5—C15'174.3 (10)
C8—C7—C10—N41.1 (3)C14—C13—N5—C1161.7 (10)
C6—C7—C10—N4176.7 (2)C14—C13—N5—C1561.7 (11)
N5—C11—C12—O823 (3)C14—C13—N5—C11'61.4 (5)
N5—C15—C16—O945 (3)C14—C13—N5—C15'69.2 (9)
C2—C3—N1—O4156.9 (2)C16'—C15'—N5—C1166.1 (17)
C4—C3—N1—O421.7 (3)C16'—C15'—N5—C1589 (11)
C2—C3—N1—O523.3 (3)C16'—C15'—N5—C11'67.3 (14)
C4—C3—N1—O5158.1 (2)C16'—C15'—N5—C13161.9 (10)
C2—C1—N2—O7136.8 (2)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O9ii0.822.142.739 (10)130
O9—H9···O11iii0.822.112.841 (17)148
N3—H3···O3iv0.861.942.794 (2)174
N4—H4A···O1v0.861.972.804 (3)165
N5—H5A···O10iii0.97 (4)1.86 (4)2.808 (4)164 (3)
O10—H10B···O20.90 (2)1.87 (3)2.751 (3)163 (5)
O10—H10A···O6v0.89 (2)2.02 (2)2.902 (4)172 (6)
Symmetry codes: (ii) x, y+1, z+1; (iii) x1, y+1/2, z1/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O9i0.822.142.739 (10)129.6
O9—H9···O11ii0.822.112.841 (17)147.9
N3—H3···O3iii0.861.942.794 (2)174.0
N4—H4A···O1iv0.861.972.804 (3)164.5
N5—H5A···O10ii0.97 (4)1.86 (4)2.808 (4)164 (3)
O10—H10B···O20.903 (19)1.87 (3)2.751 (3)163 (5)
O10—H10A···O6iv0.89 (2)2.02 (2)2.902 (4)172 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+1/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
Acknowledgements top

The authors are thankful to the SAIF, IIT Madras, for the data collection.

references
References top

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Babykala, R. & Kalaivani, D. (2012). Acta Cryst. E68, o541.

Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Buvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433–o1434.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Kalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255–260. Cambridge, England: WSEAS Press UK.

Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369–373.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.