[Journal logo]

Volume 69 
Part 6 
Page m332  
June 2013  

Received 6 May 2013
Accepted 13 May 2013
Online 18 May 2013

Key indicators
Single-crystal X-ray study
T = 90 K
Mean [sigma](C-C) = 0.002 Å
R = 0.024
wR = 0.059
Data-to-parameter ratio = 11.6
Details
Open access

Tris(ethylenediamine)cobalt(II) dichloride

aDepartment of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
Correspondence e-mail: kkovnir@ucdavis.edu

The title compound, [CoII(C2H8N2)3]Cl2, was obtained unexpectedly as the product of an attempted solvothermal synthesis of cobalt selenide from the elements in the presence of NH4Cl in ethylenediamine solvent. The three chelate rings of the distorted octahedral [Co(C2H8N2)3]2+ complex cation adopt twisted conformations about their C-C bonds. The spread of cis-N-Co-N bond angles [80.17 (6)-98.10 (6)°] in the title compound is considerably greater than the equivalent data for [CoIII(C2H8N2)3]Cl3 [Takamizawa et al. (2008[Takamizawa, S., Akatsuka, T. & Ueda, T. (2008). Angew. Chem. Int. Ed. 47, 1689-1692.]). Angew. Chem. Int. Ed. 47, 1689-1692]. In the crystal, the components are linked by numerous N-H...Cl hydrogen bonds, generating a three-dimensional network in which the cationic complexes are stacked in columns along [010] and separated by columns of chloride anions.

Related literature

The corresponding CoIII-tris-ethylenediamine complex with chloride counter-anions has been reported by Takamizawa et al. (2008[Takamizawa, S., Akatsuka, T. & Ueda, T. (2008). Angew. Chem. Int. Ed. 47, 1689-1692.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H8N2)3]Cl2

  • Mr = 310.14

  • Orthorhombic, P b c a

  • a = 8.1590 (8) Å

  • b = 17.047 (3) Å

  • c = 20.3974 (14) Å

  • V = 2837.0 (6) Å3

  • Z = 8

  • Cu K[alpha] radiation

  • [mu] = 12.81 mm-1

  • T = 90 K

  • 0.31 × 0.17 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.109, Tmax = 0.243

  • 17930 measured reflections

  • 2700 independent reflections

  • 2437 reflections with I > 2[sigma](I)

  • Rint = 0.042

Refinement
  • R[F2 > 2[sigma](F2)] = 0.024

  • wR(F2) = 0.059

  • S = 1.06

  • 2700 reflections

  • 232 parameters

  • All H-atom parameters refined

  • [Delta][rho]max = 0.26 e Å-3

  • [Delta][rho]min = -0.37 e Å-3

Table 1
Selected bond lengths (Å)

Co-N1 2.1540 (15)
Co-N3 2.1558 (15)
Co-N2 2.1635 (15)
Co-N5 2.1748 (15)
Co-N4 2.1767 (15)
Co-N6 2.1791 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1B...Cl2 0.82 (2) 2.48 (3) 3.2839 (17) 167 (2)
N1-H1A...Cl2i 0.86 (2) 2.57 (2) 3.3056 (16) 145.4 (18)
N2-H2A...Cl1ii 0.83 (2) 2.92 (2) 3.5494 (16) 133.6 (17)
N2-H2A...Cl2iii 0.83 (2) 2.94 (2) 3.5887 (17) 135.8 (17)
N2-H2B...Cl1 0.88 (2) 2.65 (2) 3.4566 (17) 152.5 (18)
N5-H5B...Cl1ii 0.87 (2) 2.51 (2) 3.3770 (16) 173.1 (19)
N5-H5A...Cl1iv 0.82 (2) 2.70 (2) 3.4514 (18) 152.4 (19)
N6-H6B...Cl1 0.88 (3) 2.66 (3) 3.4552 (18) 150.3 (19)
N6-H6A...Cl1v 0.83 (2) 2.71 (2) 3.4653 (16) 152.9 (19)
N3-H3A...Cl1iv 0.88 (2) 2.59 (2) 3.4075 (17) 154.2 (17)
N3-H3B...Cl2i 0.82 (2) 2.49 (2) 3.2560 (16) 156 (2)
N4-H4A...Cl2 0.85 (2) 2.68 (2) 3.5003 (17) 161 (2)
N4-H4B...Cl2iii 0.87 (2) 2.55 (2) 3.2919 (16) 143.5 (19)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7079 ).


Acknowledgements

The authors thank the UC Davis ChemEnergy NSF REU Grant #CHE-1004925 for financial support.

References

Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [ISI] [CrossRef] [ChemPort] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]
Takamizawa, S., Akatsuka, T. & Ueda, T. (2008). Angew. Chem. Int. Ed. 47, 1689-1692.  [ISI] [CSD] [CrossRef] [ChemPort]


Acta Cryst (2013). E69, m332  [ doi:10.1107/S1600536813013135 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.