supplementary materials


hg5312 scheme

Acta Cryst. (2013). E69, o832    [ doi:10.1107/S1600536813011574 ]

2-Chloro-6-(2,3-dichlorobenzenesulfonamido)benzoic acid

A. Munir, H. Mubashar-ur-Rehman, A. M. Asiri, I. U. Khan and M. N. Arshad

Abstract top

In the title compound, C13H8Cl3NO4S, the aromatic rings are oriented at a dihedral angle of 68.94 (1)° and the molecule adopts a V-shape. An intramolecular N-H...O interaction generates a six-membered S(6) ring motif. In the crystal, pairs of O-H...O hydrogen bonds involving the carboxy group link the molecules into inversion dimers with an R22(8) motif. N-H...O and non-classical C-H...O interactions connect the molecules, forming sheets propagating in (100).

Comment top

In connection to synthesis of halogenated sulfonamide derivatives 2-Chloro-4-(2-iodobenzenesulfonamido)benzoic acid (Arshad et al., 2011) and 2-Chloro-5-(2-iodobenzenesulfonamido)benzoic acid (Arshad et al., 2009), we are reporting the crystal structure of title compound.

The two aromatic rings [(C1—C6) & (C7—C12)] in the structure of molecule are oriented at dihedral angle of 68.94 (1)°. The carboxylic group (C13/O3/O4) is twisted at 58.11 (1)° with respect to its mother aromatic ring (C7—C12) and its atoms C13, O3 & O4 are away by -0.1938 (35)Å , 0.6924 (39)Å , -1.1739 (39)Å repectively from the mean plane generating from atoms C7/C8/C9/C10/C11/C12 with the r.m.s deviation of 0.0183 (15) Å. The amino and carboxylic groups are involved in classical N1—H1···O3 intramolecular hydrogen bonding interaction and produce six membered ring motif S11 (6) (Bernstein et al. 1995) which is oriented at dihedral angles of 54.30 (11)° & 18.98 (12)° with respect to two aromatic rings [(C1—C6) & (C7—C12)], respectively. On the other hand the amino group get connected with oxygen of SO2 to form intermolecular N1—H1···O2 hydrogen bond. The carboxylic group gives typical inversion dimerization by generating eight membered ring motif R22 (8) (Bernstein et al. 1995) through O3—H3···O4 interaction. The non-clasical C—H···O type interaction have also been observed in the molecule (Fig. 2) for which symmetry detail are available in Table 1.

Related literature top

For the synthesis, see: Arshad et al. (2012) For related structures, see: Arshad et al. (2009, 2011). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesised following the literature method (Arshad et al., 2012) and recrystallized from ethylacetate under slow evaporation at room temperature.

Refinement top

All the H-atoms were positioned with idealized geometry with C—H = 0.93 Å, N—H = 0.86 Å, O—H = 0.82 Å and were refined as riding with Uiso(H) = 1.2 Ueq(K), where K = C, N & O for all H-atoms. The reflections (0 1 2), (1 3 1), (1 0 0), (2 1 0) & (0 2 0) are omitted in final refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The labelled structure of (C13 H8 Cl3 N O4 S) with 50% probability of thermal ellipsoids.
[Figure 2] Fig. 2. A perspective view showing two dimensional network generating through O—H···O, N—H···O and C—H···O hydrogen bonds, drawn using dashed lines.
2-Chloro-6-(2,3-dichlorobenzenesulfonamido)benzoic acid top
Crystal data top
C13H8Cl3NO4SF(000) = 768
Mr = 380.61Dx = 1.645 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 5339 reflections
a = 9.0164 (3) Åθ = 4.8–73.0°
b = 18.6017 (5) ŵ = 6.83 mm1
c = 9.8574 (3) ÅT = 296 K
β = 111.653 (3)°Prismatic, colorless
V = 1536.62 (8) Å30.38 × 0.20 × 0.18 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD)
diffractometer
3018 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2597 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
ω scansθmax = 73.1°, θmin = 5.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1011
Tmin = 0.467, Tmax = 1.000k = 2222
11742 measured reflectionsl = 1211
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0471P)2 + 1.0131P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3018 reflectionsΔρmax = 0.55 e Å3
201 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (2)
Crystal data top
C13H8Cl3NO4SV = 1536.62 (8) Å3
Mr = 380.61Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.0164 (3) ŵ = 6.83 mm1
b = 18.6017 (5) ÅT = 296 K
c = 9.8574 (3) Å0.38 × 0.20 × 0.18 mm
β = 111.653 (3)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas, CCD)
diffractometer
3018 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2597 reflections with I > 2σ(I)
Tmin = 0.467, Tmax = 1.000Rint = 0.025
11742 measured reflectionsθmax = 73.1°
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.55 e Å3
S = 1.04Δρmin = 0.60 e Å3
3018 reflectionsAbsolute structure: ?
201 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21203 (15)0.41272 (5)0.58195 (14)0.1161 (5)
Cl20.17428 (9)0.55156 (5)0.74492 (8)0.0718 (3)
Cl30.94473 (9)0.58369 (5)1.01517 (11)0.0797 (3)
S10.24536 (6)0.70690 (3)0.62789 (6)0.03763 (17)
O10.1045 (2)0.71147 (11)0.6596 (2)0.0562 (5)
O20.2792 (2)0.76184 (9)0.54279 (18)0.0482 (4)
O30.5137 (2)0.59728 (8)1.02304 (19)0.0460 (4)
H30.48160.56001.04730.055*
O40.6012 (2)0.52066 (9)0.8971 (2)0.0572 (5)
N10.3928 (2)0.70318 (10)0.78616 (19)0.0357 (4)
H10.37060.70320.86380.043*
C10.2524 (3)0.62421 (13)0.5405 (2)0.0417 (5)
C20.2255 (3)0.55805 (14)0.5932 (3)0.0510 (6)
C30.2403 (4)0.49629 (16)0.5195 (4)0.0693 (9)
C40.2779 (4)0.5009 (2)0.3962 (4)0.0843 (11)
H40.28670.45920.34760.101*
C50.3022 (5)0.5663 (2)0.3450 (4)0.0804 (10)
H50.32690.56910.26150.096*
C60.2903 (4)0.62797 (17)0.4168 (3)0.0583 (7)
H60.30780.67240.38230.070*
C70.5563 (2)0.69989 (11)0.8019 (2)0.0327 (4)
C80.6539 (2)0.64427 (11)0.8821 (2)0.0329 (4)
C90.8156 (3)0.64584 (13)0.9024 (3)0.0418 (5)
C100.8775 (3)0.69735 (14)0.8382 (3)0.0485 (6)
H100.98520.69700.85180.058*
C110.7777 (3)0.74919 (15)0.7535 (3)0.0536 (7)
H110.81750.78290.70610.064*
C120.6188 (3)0.75223 (13)0.7376 (3)0.0467 (6)
H120.55400.78920.68400.056*
C130.5870 (3)0.58240 (11)0.9374 (2)0.0348 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1280 (9)0.0446 (5)0.1266 (9)0.0192 (5)0.0106 (7)0.0082 (5)
Cl20.0734 (5)0.0782 (5)0.0597 (4)0.0271 (4)0.0197 (3)0.0177 (4)
Cl30.0502 (4)0.0720 (5)0.1115 (7)0.0207 (3)0.0236 (4)0.0361 (5)
S10.0363 (3)0.0420 (3)0.0365 (3)0.0046 (2)0.0158 (2)0.0039 (2)
O10.0388 (9)0.0760 (13)0.0587 (11)0.0094 (8)0.0238 (8)0.0034 (9)
O20.0531 (9)0.0456 (10)0.0438 (9)0.0048 (7)0.0153 (7)0.0123 (7)
O30.0692 (11)0.0324 (8)0.0514 (10)0.0026 (8)0.0397 (9)0.0004 (7)
O40.0914 (14)0.0287 (8)0.0748 (13)0.0047 (8)0.0580 (11)0.0055 (8)
N10.0380 (9)0.0422 (10)0.0303 (9)0.0018 (7)0.0167 (7)0.0005 (7)
C10.0419 (11)0.0449 (13)0.0356 (11)0.0006 (10)0.0111 (9)0.0023 (9)
C20.0446 (13)0.0496 (15)0.0468 (14)0.0081 (11)0.0027 (11)0.0017 (11)
C30.0639 (17)0.0444 (16)0.072 (2)0.0044 (13)0.0075 (15)0.0037 (14)
C40.095 (2)0.070 (2)0.070 (2)0.0129 (19)0.0098 (19)0.0296 (18)
C50.108 (3)0.078 (2)0.0594 (19)0.012 (2)0.0362 (19)0.0156 (17)
C60.0753 (18)0.0590 (17)0.0460 (14)0.0016 (14)0.0285 (13)0.0020 (12)
C70.0369 (10)0.0302 (10)0.0325 (10)0.0020 (8)0.0148 (8)0.0012 (8)
C80.0405 (10)0.0270 (10)0.0336 (10)0.0026 (8)0.0166 (8)0.0021 (8)
C90.0396 (11)0.0391 (12)0.0474 (13)0.0024 (9)0.0168 (10)0.0002 (10)
C100.0369 (11)0.0556 (15)0.0568 (15)0.0089 (10)0.0218 (11)0.0030 (12)
C110.0518 (14)0.0530 (16)0.0602 (16)0.0145 (11)0.0257 (12)0.0121 (12)
C120.0468 (13)0.0401 (13)0.0515 (14)0.0042 (10)0.0161 (11)0.0126 (10)
C130.0418 (11)0.0297 (10)0.0357 (11)0.0013 (8)0.0174 (9)0.0012 (8)
Geometric parameters (Å, º) top
Cl1—C31.725 (3)C4—C51.366 (5)
Cl2—C21.725 (3)C4—H40.9300
Cl3—C91.724 (2)C5—C61.373 (4)
S1—O11.4179 (17)C5—H50.9300
S1—O21.4247 (17)C6—H60.9300
S1—N11.6357 (18)C7—C121.389 (3)
S1—C11.776 (2)C7—C81.399 (3)
O3—C131.279 (3)C8—C91.397 (3)
O3—H30.8200C8—C131.493 (3)
O4—C131.238 (3)C9—C101.375 (3)
N1—C71.426 (3)C10—C111.372 (4)
N1—H10.8600C10—H100.9300
C1—C61.384 (3)C11—C121.383 (3)
C1—C21.391 (3)C11—H110.9300
C2—C31.391 (4)C12—H120.9300
C3—C41.380 (5)
O1—S1—O2119.37 (11)C5—C6—C1120.3 (3)
O1—S1—N1105.73 (10)C5—C6—H6119.9
O2—S1—N1108.47 (10)C1—C6—H6119.9
O1—S1—C1110.74 (12)C12—C7—C8120.0 (2)
O2—S1—C1106.38 (11)C12—C7—N1119.82 (19)
N1—S1—C1105.32 (10)C8—C7—N1120.19 (18)
C13—O3—H3109.5C9—C8—C7118.12 (19)
C7—N1—S1123.33 (14)C9—C8—C13120.35 (19)
C7—N1—H1118.3C7—C8—C13121.44 (18)
S1—N1—H1118.3C10—C9—C8121.9 (2)
C6—C1—C2120.5 (2)C10—C9—Cl3118.17 (18)
C6—C1—S1116.6 (2)C8—C9—Cl3119.94 (18)
C2—C1—S1122.88 (19)C11—C10—C9118.9 (2)
C1—C2—C3118.2 (3)C11—C10—H10120.5
C1—C2—Cl2121.7 (2)C9—C10—H10120.5
C3—C2—Cl2120.2 (2)C10—C11—C12121.2 (2)
C4—C3—C2120.7 (3)C10—C11—H11119.4
C4—C3—Cl1119.1 (3)C12—C11—H11119.4
C2—C3—Cl1120.2 (3)C11—C12—C7119.8 (2)
C5—C4—C3120.4 (3)C11—C12—H12120.1
C5—C4—H4119.8C7—C12—H12120.1
C3—C4—H4119.8O4—C13—O3123.6 (2)
C4—C5—C6120.0 (3)O4—C13—C8119.58 (19)
C4—C5—H5120.0O3—C13—C8116.82 (18)
C6—C5—H5120.0
O1—S1—N1—C7178.47 (17)S1—C1—C6—C5178.3 (3)
O2—S1—N1—C749.3 (2)S1—N1—C7—C1255.1 (3)
C1—S1—N1—C764.24 (19)S1—N1—C7—C8125.01 (19)
O1—S1—C1—C6132.5 (2)C12—C7—C8—C93.9 (3)
O2—S1—C1—C61.4 (2)N1—C7—C8—C9175.94 (19)
N1—S1—C1—C6113.6 (2)C12—C7—C8—C13172.5 (2)
O1—S1—C1—C249.0 (2)N1—C7—C8—C137.6 (3)
O2—S1—C1—C2179.83 (19)C7—C8—C9—C104.4 (3)
N1—S1—C1—C264.8 (2)C13—C8—C9—C10172.1 (2)
C6—C1—C2—C31.0 (4)C7—C8—C9—Cl3173.60 (17)
S1—C1—C2—C3177.45 (19)C13—C8—C9—Cl39.9 (3)
C6—C1—C2—Cl2178.7 (2)C8—C9—C10—C111.0 (4)
S1—C1—C2—Cl22.9 (3)Cl3—C9—C10—C11177.0 (2)
C1—C2—C3—C41.1 (4)C9—C10—C11—C123.0 (4)
Cl2—C2—C3—C4178.6 (2)C10—C11—C12—C73.4 (4)
C1—C2—C3—Cl1178.77 (19)C8—C7—C12—C110.2 (4)
Cl2—C2—C3—Cl11.5 (3)N1—C7—C12—C11179.7 (2)
C2—C3—C4—C50.4 (5)C9—C8—C13—O456.9 (3)
Cl1—C3—C4—C5179.4 (3)C7—C8—C13—O4119.5 (2)
C3—C4—C5—C60.4 (6)C9—C8—C13—O3124.7 (2)
C4—C5—C6—C10.5 (5)C7—C8—C13—O358.9 (3)
C2—C1—C6—C50.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.552.940 (2)108
C12—H12···O3i0.932.593.425 (3)150
O3—H3···O4ii0.821.852.666 (2)176
N1—H1···O2iii0.862.303.128 (2)162
C5—H5···O4iv0.932.533.256 (4)135
C10—H10···O1v0.932.513.165 (3)127
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.552.940 (2)108.4
C12—H12···O3i0.932.593.425 (3)150.3
O3—H3···O4ii0.821.852.666 (2)176.4
N1—H1···O2iii0.862.303.128 (2)161.9
C5—H5···O4iv0.932.533.256 (4)135.2
C10—H10···O1v0.932.513.165 (3)127.2
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+1, y, z.
Acknowledgements top

The authors would like to thank the Deanship of Scientific Research at King Abdulaziz University for the support of this research via the Research Group Track of Grant No. ( 3-102/428).

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Arshad, M. N., Danish, M., Tahir, M. N., Aabideen, Z. U. & Asiri, A. M. (2012). Acta Cryst. E68, o2665.

Arshad, M. N., Khan, I. U., Rafique, H. M., Asiri, A. M. & Shafiq, M. (2011). Acta Cryst. E67, o1327.

Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o281.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.