supplementary materials


hg5313 scheme

Acta Cryst. (2013). E69, o900-o901    [ doi:10.1107/S1600536813012865 ]

2-(4-Bromophenyl)-N-(3,4-difluorophenyl)acetamide

A. S. Praveen, H. S. Yathirajan, J. P. Jasinski, A. C. Keeley, B. Narayana and B. K. Sarojini

Abstract top

In the title compound, C14H10BrF2NO, the dihedral angle between the mean planes of the 4-bromophenyl and 3,4-difluorophenyl rings is 66.4 (1)°. These two planes are twisted by 40.0 (5) and 86.3 (2)°, respectively, from that of the acetamide group. In the crystal, N-H...O hydrogen bonds and weak C-H...O and C-H...F interactions form infinite chains along [100].

Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011a), N-(4-chloro-1,3-benzothiazol-2-yl)-2- (3-methylphenyl)acetamide monohydrate (Praveen et al., 2011b), N-(3-chloro-4-fluorophenyl)-2,2-diphenylacetamide (Praveen et al., 2011c) and N-(4,6-dimethoxypyrimidin-2-yl)-2-(3-methylphenyl)acetamide (Praveen et al., 2012) have been reported. In view of the importance of amides, we report here in the crystal structure of the title compound, C14H10BrF2NO, (I).

In (I) the dihedral angle between the mean planes of the 4-bromophenyl and 3,4-difluorophenyl rings is 66.4 (1)° (Fig. 1). These two planes are twisted by 40.0 (5)° and 86.3 (2)°, respectively, from that of the acetamide group. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, N—H···O hydrogen bonds and weak C—H···O and C—H···F intermolecular interactions are observed forming a infinite chains along (100) and contribute to packing stability (Fig. 2).

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For related structures, see: Praveen et al. (2011a,b,c, 2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-bromophenylacetic acid (0.213 g, 1 mmol), 3,4-difluoro aniline (0.129 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 mL) (Fig. 3). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methylene chloride by the slow evaporation method (m.p.: 423–425 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.88° (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate N—H···O hydrogen bonds forming infinite chains along (100). H atoms not involved in hydrogen bonding have been deleted for clarity.
[Figure 3] Fig. 3. Synthesis of (I).
2-(4-Bromophenyl)-N-(3,4-difluorophenyl)acetamide top
Crystal data top
C14H10BrF2NODx = 1.722 Mg m3
Mr = 326.14Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 3482 reflections
a = 4.9136 (3) Åθ = 3.1–71.3°
b = 6.0218 (4) ŵ = 4.62 mm1
c = 42.514 (2) ÅT = 173 K
V = 1257.96 (13) Å3Block, colorless
Z = 40.48 × 0.32 × 0.16 mm
F(000) = 648
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2402 independent reflections
Radiation source: Enhance (Cu) X-ray Source2388 reflections with I > 2σ(I)
Detector resolution: 16.1500 pixels mm-1Rint = 0.036
ω scansθmax = 71.4°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 54
Tmin = 0.257, Tmax = 1.000k = 77
6592 measured reflectionsl = 5152
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0518P)2 + 2.6477P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max = 0.001
wR(F2) = 0.106Δρmax = 0.87 e Å3
S = 1.15Δρmin = 0.59 e Å3
2402 reflectionsExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
173 parametersExtinction coefficient: 0.0034 (5)
0 restraintsAbsolute structure: Flack x determined using 915 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Hydrogen site location: inferred from neighbouring sitesFlack parameter: 0.01 (2)
Crystal data top
C14H10BrF2NOV = 1257.96 (13) Å3
Mr = 326.14Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 4.9136 (3) ŵ = 4.62 mm1
b = 6.0218 (4) ÅT = 173 K
c = 42.514 (2) Å0.48 × 0.32 × 0.16 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2402 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2388 reflections with I > 2σ(I)
Tmin = 0.257, Tmax = 1.000Rint = 0.036
6592 measured reflectionsθmax = 71.4°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.87 e Å3
S = 1.15Δρmin = 0.59 e Å3
2402 reflectionsAbsolute structure: Flack x determined using 915 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
173 parametersFlack parameter: 0.01 (2)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05444 (13)1.14849 (10)0.52705 (2)0.0255 (2)
F10.8291 (12)0.2536 (11)0.73852 (13)0.0682 (16)
F21.2315 (12)0.3056 (8)0.69684 (13)0.0577 (14)
O10.5535 (9)0.4454 (8)0.63179 (10)0.0308 (9)
N10.9924 (9)0.3661 (9)0.64466 (11)0.0243 (11)
H11.16300.39880.64040.029*
C10.7964 (12)0.4695 (10)0.62744 (13)0.0203 (12)
C20.9134 (13)0.6097 (10)0.60058 (15)0.0283 (13)
H2A1.04890.71480.60930.034*
H2B1.00880.51090.58560.034*
C30.6979 (12)0.7387 (11)0.58317 (14)0.0222 (12)
C40.5905 (13)0.6561 (11)0.55519 (14)0.0274 (12)
H40.64910.51610.54740.033*
C50.3960 (12)0.7791 (10)0.53850 (14)0.0231 (13)
H50.32160.72380.51940.028*
C60.3155 (12)0.9796 (10)0.55018 (13)0.0206 (11)
C70.4148 (13)1.0645 (10)0.57804 (14)0.0235 (12)
H70.35311.20350.58580.028*
C80.6072 (12)0.9412 (11)0.59439 (13)0.0255 (13)
H80.67790.99700.61360.031*
C90.9424 (13)0.2099 (10)0.66883 (13)0.0247 (12)
C101.1086 (13)0.0238 (12)0.67050 (15)0.0300 (14)
H101.24960.00180.65550.036*
C111.0656 (16)0.1289 (11)0.69426 (16)0.0365 (15)
C120.8674 (15)0.0986 (14)0.71582 (17)0.0427 (19)
C130.7024 (15)0.0831 (15)0.71475 (16)0.0415 (19)
H130.56410.10220.73010.050*
C140.7366 (14)0.2408 (13)0.69109 (15)0.0305 (14)
H140.62170.36750.69010.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0229 (3)0.0270 (3)0.0266 (3)0.0051 (2)0.0000 (2)0.0054 (2)
F10.062 (3)0.089 (4)0.054 (3)0.020 (3)0.005 (3)0.045 (3)
F20.063 (3)0.045 (3)0.065 (3)0.010 (2)0.009 (3)0.009 (2)
O10.015 (2)0.045 (2)0.032 (2)0.003 (2)0.0007 (18)0.0076 (19)
N10.007 (2)0.037 (3)0.029 (2)0.001 (2)0.0003 (16)0.006 (2)
C10.011 (3)0.025 (3)0.025 (3)0.001 (2)0.000 (2)0.002 (2)
C20.016 (3)0.031 (3)0.038 (3)0.005 (3)0.005 (2)0.009 (2)
C30.012 (3)0.030 (3)0.024 (3)0.002 (2)0.004 (2)0.006 (2)
C40.026 (3)0.024 (3)0.032 (3)0.009 (3)0.005 (2)0.002 (2)
C50.023 (3)0.022 (3)0.024 (3)0.004 (2)0.000 (2)0.002 (2)
C60.013 (3)0.024 (3)0.024 (3)0.002 (2)0.003 (2)0.007 (2)
C70.021 (3)0.023 (3)0.027 (3)0.006 (3)0.002 (2)0.005 (2)
C80.024 (3)0.030 (3)0.022 (3)0.003 (3)0.001 (2)0.002 (2)
C90.017 (3)0.033 (3)0.024 (3)0.010 (3)0.006 (2)0.003 (2)
C100.022 (3)0.040 (4)0.027 (3)0.003 (3)0.000 (2)0.003 (3)
C110.038 (4)0.031 (3)0.041 (3)0.006 (4)0.013 (3)0.006 (3)
C120.036 (4)0.057 (5)0.035 (3)0.016 (3)0.012 (3)0.020 (3)
C130.025 (4)0.069 (6)0.029 (3)0.009 (4)0.001 (3)0.007 (3)
C140.024 (3)0.042 (4)0.025 (3)0.002 (3)0.001 (2)0.003 (3)
Geometric parameters (Å, º) top
Br1—C61.909 (6)C5—C61.364 (9)
F1—C121.356 (8)C5—H50.9500
F2—C111.345 (9)C6—C71.379 (8)
O1—C11.217 (8)C7—C81.389 (9)
N1—C11.360 (7)C7—H70.9500
N1—C91.414 (8)C8—H80.9500
N1—H10.8800C9—C101.388 (10)
C1—C21.532 (8)C9—C141.398 (9)
C2—C31.508 (8)C10—C111.382 (9)
C2—H2A0.9900C10—H100.9500
C2—H2B0.9900C11—C121.350 (11)
C3—C81.383 (9)C12—C131.362 (12)
C3—C41.393 (9)C13—C141.394 (10)
C4—C51.402 (8)C13—H130.9500
C4—H40.9500C14—H140.9500
C1—N1—C9124.9 (5)C6—C7—C8118.2 (5)
C1—N1—H1117.5C6—C7—H7120.9
C9—N1—H1117.5C8—C7—H7120.9
O1—C1—N1123.9 (6)C3—C8—C7121.2 (6)
O1—C1—C2123.2 (6)C3—C8—H8119.4
N1—C1—C2112.8 (5)C7—C8—H8119.4
C3—C2—C1112.7 (5)C10—C9—C14119.9 (6)
C3—C2—H2A109.0C10—C9—N1118.2 (6)
C1—C2—H2A109.0C14—C9—N1122.0 (6)
C3—C2—H2B109.0C11—C10—C9119.0 (6)
C1—C2—H2B109.0C11—C10—H10120.5
H2A—C2—H2B107.8C9—C10—H10120.5
C8—C3—C4119.2 (6)F2—C11—C12119.3 (6)
C8—C3—C2120.7 (6)F2—C11—C10119.6 (7)
C4—C3—C2120.1 (6)C12—C11—C10121.1 (7)
C3—C4—C5120.1 (6)C11—C12—F1119.4 (8)
C3—C4—H4119.9C11—C12—C13121.0 (7)
C5—C4—H4119.9F1—C12—C13119.6 (8)
C6—C5—C4118.8 (6)C12—C13—C14120.0 (7)
C6—C5—H5120.6C12—C13—H13120.0
C4—C5—H5120.6C14—C13—H13120.0
C5—C6—C7122.5 (6)C13—C14—C9119.0 (7)
C5—C6—Br1118.6 (4)C13—C14—H14120.5
C7—C6—Br1118.9 (5)C9—C14—H14120.5
C9—N1—C1—O13.0 (10)C1—N1—C9—C10138.7 (6)
C9—N1—C1—C2173.6 (5)C1—N1—C9—C1442.7 (9)
O1—C1—C2—C38.0 (9)C14—C9—C10—C110.3 (9)
N1—C1—C2—C3175.4 (5)N1—C9—C10—C11179.0 (6)
C1—C2—C3—C883.5 (7)C9—C10—C11—F2177.5 (6)
C1—C2—C3—C497.5 (7)C9—C10—C11—C120.6 (10)
C8—C3—C4—C50.9 (9)F2—C11—C12—F13.9 (11)
C2—C3—C4—C5178.1 (5)C10—C11—C12—F1179.1 (6)
C3—C4—C5—C60.1 (9)F2—C11—C12—C13177.3 (7)
C4—C5—C6—C71.1 (9)C10—C11—C12—C130.3 (11)
C4—C5—C6—Br1179.1 (5)C11—C12—C13—C140.1 (11)
C5—C6—C7—C81.1 (9)F1—C12—C13—C14178.6 (7)
Br1—C6—C7—C8179.1 (5)C12—C13—C14—C90.4 (11)
C4—C3—C8—C71.0 (9)C10—C9—C14—C130.1 (10)
C2—C3—C8—C7178.0 (6)N1—C9—C14—C13178.5 (6)
C6—C7—C8—C30.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.972.851 (7)175
C7—H7···O1ii0.952.633.309 (8)129
C13—H13···F1iii0.952.503.426 (9)164
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.881.972.851 (7)175.1
C7—H7···O1ii0.952.633.309 (8)128.9
C13—H13···F1iii0.952.503.426 (9)163.9
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+3/2.
Acknowledgements top

ASP thanks the University of Mysore for research facilities. BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.

Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.

Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.

Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1826.

Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2602–o2603.

Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o2604.

Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o226–o227.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.

Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.