supplementary materials


hg5316 scheme

Acta Cryst. (2013). E69, o966    [ doi:10.1107/S1600536813013792 ]

2,4,6-Trinitrophenyl 3-chlorobenzoate

R. Moreno-Fuquen, F. Mosquera, J. Ellena, C. A. De Simone and J. C. Tenorio

Abstract top

In the title benzoate derivative, C13H6ClN3O8, the planes of the benzene rings form a dihedral angle of 73.59 (7)°. The central ester unit forms an angle of 20.38 (12)° with the chloro-substituted benzene ring. In the crystal, molecules are linked by weak C-H...O interactions, forming helical chains along [101] and [100].

Comment top

The title compound, C13H6ClN3O8[2,4,6-trinitrophenyl 3-chlorobenzoate] (I), belongs to a group of molecules known as picryl substituted-benzoates (or 2,4,6-trinitrofenil substituted-benzoates). Our research group has been lately investigating about this type of compound, in order to complete the crystallographic information around picryl substituted-benzoates. Also, the structural information can be linked or be useful to explain the results found at investigations of reaction kinetics (Kirkien-Konasiewicz & Maccoll, 1964; Belousova et al., 2000), spectroscopic behavior and theoretical studies (Ibrahim et al., 2011) underwent over this same group of compounds. The molecular structure of (I) is shown in Fig. 1, with a numbering scheme similar to that for TNP4ClBA (Moreno-Fuquen et al., 2013), TNP3MeBA (Moreno-Fuquen et al., 2012a), TNP4MeBA(Moreno-Fuquen et al., 2012b) and TNPBA (Moreno-Fuquen et al., 2012c) in order to simplify structural comparisons. As a general fact, described deeply in previous papers (Moreno-Fuquen et al., 2012c and 2013), the structural parameters of substituted picryl benzoates, including (I), show significant differences in the bond distances C1—O7 and C7—O7 if they are compared with analogous distances in other phenyl benzoates reported in the literature (Allen, 2002, Version 5.33). The benzene rings of (I) form a dihedral angle of 73.59 (7)°. The central ester moiety forms an angle of 20.38 (12)° with the chloro-substituted benzene ring to which it is attached and an angle of 86.03 (7)° with the picryl ring. The nitro groups form dihedral angles with the adjacent benzene ring of 59.14 (9)°, 3.6 (2)° and 21.48 (14)° for O1—N1—O2, O3—N2—O4 and O5—N3—O6, respectively. The molecules are packed in a three dimensional network, through weak interactions C—H···O (see Table 1; Nardelli, 1995). Weak C3-H3···O3 and C11-H11···O1 contacts which reinforced each other, allow the molecules to propagate, forming one-dimensional helical chains, along [101]. Both weak contacts form dimers within the structure, as is shown in Fig. 2, and allow the formation of R22(10) and R22(22) rings respectively (Etter, 1990). In addition to the mentioned interactions other weak C-H···O interactions are observed. Indeed, the C13-H13···O4 and C10-H10···O2 weak contacts, form C(9) and C(12) chains of molecules allowing the crystal to grow also along [100] (see Fig. 3).

Related literature top

For investigations on reaction kinetics, see: Kirkien-Konasiewicz & Maccoll (1964); Belousova et al. (2000). For spectroscopic and theoretical studies, see: Ibrahim et al. (2011). For bond-length data, see: Allen et al. (1987). For similar structures, see: Moreno-Fuquen et al. (2012a,b,c, 2013). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond motifs, see: Etter et al. (1990). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was obtained through a two-step reaction. First the 3-chlorobenzoic acid (0.20g, 0.554 mmol) was refluxed in an excess of thionyl chloride (10 ml) during an hour. Then thionyl chloride was distilled off under reduced pressure to purify the 3-chorobenzoyl chloride obtained as a pale yellow traslucent liquid. The same reaction flask was rearranged and a solution of picric acid (0.12 g, 0.554 mmol) in acetonitrile was added dropwise with constant stirring. The reaction mixture was left to reflux for about an hour. A pale yellow solid was obtained after leaving the solvent to evaporate. The solid was washed with distilled water and cold methanol to eliminate impurities. Crystals of good quality and suitable for single-crystal X-ray diffraction were grown from acetonitrile. IR spectra were recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. Pale Yellow crystals; yield 65%; m.p 408 (1)K. IR (KBr) 3092.32 cm-1 (aromatic C—H); 1763.27 cm-1 (ester C=O); 1615.65 cm-1 (C=C); 1546.61 cm-1, 1340.90 cm-1 (–NO2); 1216.82 cm-1 (C(=O)—O).

Refinement top

All the hydrogen atoms attached to C atoms were positioned at geometrically idealized positions and treated as riding with C-H= 0.93 Å with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), forming one-dimensional helical chains, along [101]. Symmetry code: (i) -x+2,-y,-z+2; (ii) -x+1,-y,-z+1.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of chains which running along along [100]. Symmetry code: (iii) -x+2,+y-1/2,-z+3/2; (iv) -x+1,+y+1/2,-z+3/2.
2,4,6-Trinitrophenyl 3-chlorobenzoate top
Crystal data top
C13H6ClN3O8F(000) = 744
Mr = 367.66Dx = 1.634 Mg m3
Monoclinic, P21/cMelting point: 408(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.0633 (4) ÅCell parameters from 6920 reflections
b = 9.6560 (4) Åθ = 2.6–27.5°
c = 14.0251 (6) ŵ = 0.31 mm1
β = 94.009 (2)°T = 295 K
V = 1494.60 (10) Å3Block, pale-yellow
Z = 40.24 × 0.24 × 0.17 mm
Data collection top
Nonius KappaCCD
diffractometer
2015 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
CCD rotation images, thick slices scansh = 1314
16939 measured reflectionsk = 1112
3383 independent reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0973P)2]
where P = (Fo2 + 2Fc2)/3
3383 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H6ClN3O8V = 1494.60 (10) Å3
Mr = 367.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0633 (4) ŵ = 0.31 mm1
b = 9.6560 (4) ÅT = 295 K
c = 14.0251 (6) Å0.24 × 0.24 × 0.17 mm
β = 94.009 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2015 reflections with I > 2σ(I)
16939 measured reflectionsRint = 0.069
3383 independent reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.162Δρmax = 0.32 e Å3
S = 1.00Δρmin = 0.27 e Å3
3383 reflectionsAbsolute structure: ?
227 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.56852 (7)0.00919 (7)0.28977 (5)0.0682 (3)
O70.71179 (13)0.23513 (17)0.69696 (10)0.0502 (4)
O80.84485 (15)0.14324 (18)0.60062 (12)0.0578 (5)
C130.6511 (2)0.0995 (2)0.45876 (16)0.0471 (5)
H130.71740.04110.45500.057*
C30.8964 (2)0.1510 (2)0.91560 (16)0.0465 (5)
H30.90030.08230.96220.056*
C10.80334 (19)0.2457 (2)0.76791 (15)0.0440 (5)
N21.0634 (2)0.2709 (2)1.00374 (16)0.0597 (6)
C80.6420 (2)0.1866 (2)0.53711 (16)0.0464 (5)
C50.9641 (2)0.3704 (2)0.85707 (17)0.0499 (6)
H51.01500.44690.86410.060*
N10.7383 (2)0.0189 (2)0.82752 (16)0.0566 (5)
C70.7442 (2)0.1841 (2)0.61029 (16)0.0474 (5)
C20.81502 (19)0.1428 (2)0.83739 (16)0.0441 (5)
C60.8789 (2)0.3605 (2)0.78057 (16)0.0470 (5)
O31.07187 (19)0.17305 (19)1.05824 (15)0.0776 (6)
C120.5594 (2)0.1017 (2)0.38669 (16)0.0503 (6)
O60.8224 (2)0.4610 (2)0.63360 (14)0.0802 (6)
C40.9719 (2)0.2641 (2)0.92272 (16)0.0469 (5)
N30.8689 (2)0.4788 (2)0.71367 (16)0.0587 (6)
O10.7462 (2)0.0505 (2)0.75600 (16)0.0866 (7)
O50.9087 (2)0.5889 (2)0.74352 (17)0.0942 (8)
C90.5427 (2)0.2730 (3)0.54277 (18)0.0579 (6)
H90.53600.32920.59600.069*
O20.6754 (2)0.0070 (2)0.89145 (18)0.0891 (7)
O41.1242 (2)0.3733 (2)1.01268 (17)0.1025 (8)
C110.4618 (2)0.1893 (3)0.3903 (2)0.0652 (7)
H110.40160.19100.34060.078*
C100.4542 (3)0.2748 (3)0.4686 (2)0.0697 (8)
H100.38840.33430.47130.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0769 (5)0.0784 (5)0.0485 (4)0.0108 (3)0.0009 (3)0.0157 (3)
O70.0480 (9)0.0652 (10)0.0368 (9)0.0050 (7)0.0020 (7)0.0033 (7)
O80.0538 (10)0.0734 (11)0.0453 (10)0.0105 (8)0.0036 (8)0.0074 (8)
C130.0495 (12)0.0508 (13)0.0408 (12)0.0009 (10)0.0008 (10)0.0015 (10)
C30.0558 (13)0.0431 (12)0.0403 (12)0.0014 (10)0.0003 (10)0.0003 (9)
C10.0440 (12)0.0551 (13)0.0326 (11)0.0029 (10)0.0007 (9)0.0035 (9)
N20.0611 (13)0.0580 (13)0.0574 (14)0.0079 (10)0.0132 (10)0.0038 (10)
C80.0477 (13)0.0512 (13)0.0396 (12)0.0023 (10)0.0010 (10)0.0024 (10)
C50.0533 (13)0.0472 (12)0.0491 (14)0.0072 (10)0.0042 (11)0.0023 (10)
N10.0571 (12)0.0555 (12)0.0553 (13)0.0098 (9)0.0103 (10)0.0040 (10)
C70.0533 (14)0.0499 (13)0.0385 (12)0.0029 (10)0.0002 (10)0.0027 (10)
C20.0453 (12)0.0461 (12)0.0405 (12)0.0057 (9)0.0004 (10)0.0036 (9)
C60.0522 (13)0.0498 (13)0.0393 (12)0.0007 (10)0.0053 (10)0.0013 (9)
O30.0935 (15)0.0600 (12)0.0733 (14)0.0002 (10)0.0353 (11)0.0072 (10)
C120.0537 (14)0.0548 (14)0.0418 (13)0.0087 (10)0.0004 (10)0.0006 (10)
O60.1168 (18)0.0773 (13)0.0449 (11)0.0013 (11)0.0049 (11)0.0127 (9)
C40.0481 (12)0.0509 (13)0.0408 (12)0.0020 (10)0.0044 (10)0.0060 (10)
N30.0681 (14)0.0589 (14)0.0496 (13)0.0026 (10)0.0087 (11)0.0087 (10)
O10.1140 (18)0.0723 (13)0.0715 (15)0.0338 (12)0.0082 (13)0.0195 (11)
O50.130 (2)0.0646 (13)0.0845 (16)0.0310 (13)0.0140 (14)0.0210 (12)
C90.0560 (14)0.0650 (15)0.0510 (15)0.0085 (12)0.0076 (12)0.0121 (12)
O20.0872 (15)0.0940 (16)0.0878 (17)0.0358 (12)0.0189 (13)0.0113 (12)
O40.1119 (18)0.0926 (16)0.0960 (18)0.0533 (14)0.0425 (14)0.0164 (13)
C110.0568 (15)0.0773 (18)0.0582 (17)0.0004 (13)0.0189 (12)0.0063 (14)
C100.0617 (16)0.0768 (18)0.0680 (19)0.0194 (14)0.0144 (14)0.0113 (15)
Geometric parameters (Å, º) top
Cl—C121.739 (2)C8—C71.473 (3)
O7—C11.373 (3)C5—C41.377 (3)
O7—C71.382 (3)C5—C61.381 (3)
O8—C71.198 (3)C5—H50.9300
C13—C121.382 (3)N1—O21.199 (3)
C13—C81.393 (3)N1—O11.215 (3)
C13—H130.9300N1—C21.468 (3)
C3—C21.372 (3)C6—N31.478 (3)
C3—C41.375 (3)C12—C111.375 (3)
C3—H30.9300O6—N31.214 (3)
C1—C21.392 (3)N3—O51.213 (3)
C1—C61.392 (3)C9—C101.379 (4)
N2—O41.198 (3)C9—H90.9300
N2—O31.215 (3)C11—C101.380 (4)
N2—C41.469 (3)C11—H110.9300
C8—C91.386 (3)C10—H100.9300
C1—O7—C7116.14 (17)C3—C2—C1122.9 (2)
C12—C13—C8118.5 (2)C3—C2—N1117.73 (19)
C12—C13—H13120.7C1—C2—N1119.42 (19)
C8—C13—H13120.7C5—C6—C1121.7 (2)
C2—C3—C4117.7 (2)C5—C6—N3117.2 (2)
C2—C3—H3121.1C1—C6—N3121.1 (2)
C4—C3—H3121.1C11—C12—C13121.4 (2)
O7—C1—C2118.82 (19)C11—C12—Cl119.78 (18)
O7—C1—C6123.9 (2)C13—C12—Cl118.81 (19)
C2—C1—C6117.0 (2)C3—C4—C5122.3 (2)
O4—N2—O3123.9 (2)C3—C4—N2118.3 (2)
O4—N2—C4118.0 (2)C5—C4—N2119.4 (2)
O3—N2—C4118.1 (2)O5—N3—O6124.3 (2)
C9—C8—C13120.7 (2)O5—N3—C6116.7 (2)
C9—C8—C7122.8 (2)O6—N3—C6119.0 (2)
C13—C8—C7116.5 (2)C10—C9—C8119.2 (2)
C4—C5—C6118.4 (2)C10—C9—H9120.4
C4—C5—H5120.8C8—C9—H9120.4
C6—C5—H5120.8C12—C11—C10119.3 (2)
O2—N1—O1125.6 (2)C12—C11—H11120.4
O2—N1—C2117.5 (2)C10—C11—H11120.4
O1—N1—C2116.9 (2)C9—C10—C11120.9 (2)
O8—C7—O7121.1 (2)C9—C10—H10119.6
O8—C7—C8126.9 (2)C11—C10—H10119.6
O7—C7—C8111.96 (19)
C7—O7—C1—C299.7 (2)C2—C1—C6—C51.8 (3)
C7—O7—C1—C686.9 (3)O7—C1—C6—N33.1 (3)
C12—C13—C8—C90.3 (3)C2—C1—C6—N3176.59 (19)
C12—C13—C8—C7177.8 (2)C8—C13—C12—C111.2 (3)
C1—O7—C7—O84.8 (3)C8—C13—C12—Cl178.73 (16)
C1—O7—C7—C8175.72 (18)C2—C3—C4—C53.1 (3)
C9—C8—C7—O8158.6 (3)C2—C3—C4—N2177.1 (2)
C13—C8—C7—O819.5 (4)C6—C5—C4—C31.4 (3)
C9—C8—C7—O721.9 (3)C6—C5—C4—N2178.8 (2)
C13—C8—C7—O7159.95 (19)O4—N2—C4—C3175.8 (3)
C4—C3—C2—C12.4 (3)O3—N2—C4—C33.4 (3)
C4—C3—C2—N1177.2 (2)O4—N2—C4—C54.0 (4)
O7—C1—C2—C3173.9 (2)O3—N2—C4—C5176.8 (2)
C6—C1—C2—C30.0 (3)C5—C6—N3—O520.4 (3)
O7—C1—C2—N16.5 (3)C1—C6—N3—O5158.0 (2)
C6—C1—C2—N1179.6 (2)C5—C6—N3—O6159.5 (2)
O2—N1—C2—C357.8 (3)C1—C6—N3—O622.1 (3)
O1—N1—C2—C3120.5 (2)C13—C8—C9—C101.8 (4)
O2—N1—C2—C1122.5 (3)C7—C8—C9—C10176.3 (2)
O1—N1—C2—C159.2 (3)C13—C12—C11—C101.3 (4)
C4—C5—C6—C11.1 (3)Cl—C12—C11—C10178.6 (2)
C4—C5—C6—N3177.3 (2)C8—C9—C10—C111.6 (4)
O7—C1—C6—C5175.3 (2)C12—C11—C10—C90.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.503.167 (3)128
C11—H11···O1ii0.932.463.263 (3)145
C13—H13···O4iii0.932.413.312 (3)165
C10—H10···O2iv0.932.603.278 (3)131
C5—H5···O8v0.932.483.404 (3)174
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1; (iii) x+2, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.503.167 (3)128.4
C11—H11···O1ii0.932.463.263 (3)144.9
C13—H13···O4iii0.932.413.312 (3)164.8
C10—H10···O2iv0.932.603.278 (3)130.5
C5—H5···O8v0.932.483.404 (3)174.3
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1; (iii) x+2, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x+2, y+1/2, z+3/2.
Acknowledgements top

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Belousova, I. A., Simanenko, Yu. S., Savelova, V. A. & Suprun, I. P. (2000). Russ. J. Org. Chem. 36, 1656–1664.

Etter, M. (1990). Acc. Chem. Res. 23, 120–126.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Ibrahim, M. F., Senior, S. A., El-atawy, M. A., El-Sadany, S. K. & Hamed, E. A. (2011). J. Mol. Struct. 1006, 303–311.

Kirkien-Konasiewicz, A. & Maccoll, A. (1964). J. Chem. Soc. pp. 1267–1274.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Moreno-Fuquen, R., Mosquera, F., Ellena, J. & Tenorio, J. C. (2012a). Acta Cryst. E68, o2187.

Moreno-Fuquen, R., Mosquera, F., Ellena, J., Tenorio, J. C. & Corrêa, R. S. (2012b). Acta Cryst. E68, o3107.

Moreno-Fuquen, R., Mosquera, F., Ellena, J., Tenorio, J. C. & De Simone, C. A. (2013). Acta Cryst. E69, o570.

Moreno-Fuquen, R., Mosquera, F., Kennedy, A. R., Morrison, C. A. & De Almeida Santos, R. H. (2012c). Acta Cryst. E68, o3493.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.