supplementary materials


hg5317 scheme

Acta Cryst. (2013). E69, o980    [ doi:10.1107/S1600536813014256 ]

Rupatadine

M. Kaur, J. P. Jasinski, Z. A. Luopa, N. Kumar, N. G. Patel, O. Gudaparthi and H. S. Yathirajan

Abstract top

In the title compound (systematic name: 8-chloro-11-{1-[(5-methylpyridin-3-yl)methyl]piperidin-4-ylidene}-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine), C26H26ClN3, the dihedral angle between the mean planes of the chlorophenyl and cyclohepta[1,2-b]pyridinyl rings fused to the cycloheptane ring is 56.6 (1)°. The mean planes of the cyclohepta[1,2-b]pyridinyl and 5-methylpyridin-3-yl rings are twisted by 64.9 (4)°. The central piperizene group is in a slightly distorted chair configuration. A weak intramolecular C-H...N interaction is observed between the cyclohepta[1,2-b]pyridinyl and piperidin-4-ylidene moieties.

Comment top

Rupatadine (IUPAC Name: 8-Chloro-6,11-dihydro-11-[1-[(5-methyl-3- pyridinyl) methyl]-4-piperidinylidene]-5H-benzo[5,6]cyclohepta[1,2-b] pyridine) is a non-sedating antihistamine showing a rapid onset of action and a good safety profile even in prolonged treatment periods of a year (Picado, 2006; Mullol et al., 2008). A review of its use in the management of allergic disorders is published (Kean & Plosker, 2007). Rupatadine has shown as inhibition deregulation, induced by the immunological and non-immunological stimulants and the inhibition of release of cytokines, particularly the tumor necrosis factor alpha (TNF-alpha) in human mastocytes and monocytes (Picado, 2006). In vitro metabolism studies indicate that rupatadine is metabolized mainly by the cytochrome P-450 in liver (Merlos et al., 1997). In view of the importance of the title compound, (I), C26H26ClN3, we have synthesized rupatadine free base based on a reported method (Agarwal et al., 2008) and its single crystal structure is reported herin.

In (I), the dihedral angle between the mean planes of the chlorophenyl and cyclohepta[1,2-b]pyridinyl rings fused to the cycloheptane ring is 56.6 (1)° (Fig. 1). The mean planes of the cyclohepta[1,2-b]pyridinyl and 5-methyl-3-pyridinyl rings are twisted by 64.9 (4)°. The central 6-membered piperizene group adopts a slightly distorted chair configuration with puckering parameters Q, θ and φ of 0.5613 (16)Å, 3.31 (16)°, and 348 (3)°, respectively. A weak C—H···O intramolecular interaction is observed between the cyclohepta[1,2-b]pyridinyl and 4-piperidinylidene moieties. In the crystal, the molecules pack in a normal head-to tail dimer-like arrangement (Fig. 2).

Related literature top

For the pharmacological importance of rupatadine, see: Kean & Plosker (2007); Merlos et al. (1997); Mullol et al. (2008); Picado (2006). For the reported synthesis methodology of rupatadine, see: Agarwal et al. (2008). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-methyl-3-chloromethyl pyridine hydrochloride (3.5 g, 0.02 mol), desloratadine (6.2 g, 0.02 mol), potassium carbonate (6.9 g, 0.05 mol) was charged into acetonitrile (30 ml) Fig. 3). The reaction mass was heated to 313–318 K and stirred for 10-12 h (Agarwal et al., 2008). The reaction mass was cooled to 298–303 K and the inorganic material filtered. The solvent was removed under reduced pressure. Toluene (40 ml) was added to residue and heated to 328-333 K to get a clear solution. The toluene layer was washed with a saturated sodium chloride solution (40 ml) and water (25 ml). Half the quantity of toluene was distilled out under vacuum and single crystals were grown from toluene using the slow evaporation technique (m. p.: 409–410 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Idealised Me was refined as a rotating group: C26(H26A,H26B,H26C). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3 times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis.
[Figure 3] Fig. 3. Reaction scheme for the synthesis of rupatadine free base.
8-Chloro-11-{1-[(5-methylpyridin-3-yl)methyl]piperidin-4-ylidene}-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine top
Crystal data top
C26H26ClN3F(000) = 880
Mr = 415.95Dx = 1.262 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 10.2655 (3) ÅCell parameters from 4864 reflections
b = 11.3341 (4) Åθ = 3.9–72.2°
c = 18.8111 (6) ŵ = 1.67 mm1
β = 90.874 (3)°T = 173 K
V = 2188.43 (11) Å3Irregular, clear orangish orange
Z = 40.42 × 0.38 × 0.22 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4281 independent reflections
Radiation source: Enhance (Cu) X-ray Source3565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.0416 pixels mm-1θmax = 72.4°, θmin = 4.6°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 813
Tmin = 0.673, Tmax = 1.000l = 2123
13849 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.3876P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.22 e Å3
4281 reflectionsΔρmin = 0.29 e Å3
273 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0043 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H26ClN3V = 2188.43 (11) Å3
Mr = 415.95Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.2655 (3) ŵ = 1.67 mm1
b = 11.3341 (4) ÅT = 173 K
c = 18.8111 (6) Å0.42 × 0.38 × 0.22 mm
β = 90.874 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
4281 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3565 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 1.000Rint = 0.026
13849 measured reflectionsθmax = 72.4°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.122Δρmax = 0.22 e Å3
S = 1.05Δρmin = 0.29 e Å3
4281 reflectionsAbsolute structure: ?
273 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. (HPLC purity 99.75 %) FT IR (KBr) : 1350.2, 1475.6, 1583.6; 1H NMR (300 MHz, DMSO d6) δ 2.072 (s, 1H), 2.127-2.164 (m, 3H), 2.247 (s, 3H), 2.264-2.320 (m, 2H), 2.545-2.580 (m, 2H), 2.725-2.827 (m, 2H), 3.217-3.324 (m, 2H), 3.406 (s, 2H), 7.011-7.038 (d, 1H), 7.124-7.193 (m, 2H), 7.242-7.248 (d, 1H), 7.474-7.537 (m, 2H), 8.250-8.313 (dd, 3H); MS m/z (EI): 416 (M + 1).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21448 (5)0.23499 (6)0.09566 (3)0.0826 (2)
N10.76596 (13)0.40249 (13)0.35326 (7)0.0484 (3)
N20.98891 (11)0.58991 (11)0.10639 (6)0.0391 (3)
N31.29611 (17)0.88557 (15)0.14524 (10)0.0684 (5)
C10.69993 (14)0.44001 (13)0.23053 (7)0.0386 (3)
C20.69596 (14)0.46981 (14)0.30801 (8)0.0399 (3)
C30.61966 (15)0.56496 (14)0.32955 (8)0.0443 (4)
C40.54486 (17)0.63427 (15)0.27422 (9)0.0509 (4)
H4A0.60380.65500.23500.061*
H4B0.51370.70870.29560.061*
C50.42840 (16)0.56586 (15)0.24409 (9)0.0487 (4)
H5A0.36930.54880.28390.058*
H5B0.38080.61870.21080.058*
C60.45366 (15)0.45093 (14)0.20564 (8)0.0425 (3)
C70.57478 (14)0.39337 (14)0.19947 (7)0.0394 (3)
C80.76056 (19)0.43009 (18)0.42245 (9)0.0576 (5)
H80.81010.38380.45520.069*
C90.6876 (2)0.52139 (19)0.44884 (9)0.0626 (5)
H90.68630.53730.49840.075*
C100.61619 (18)0.58930 (16)0.40146 (9)0.0558 (4)
H100.56470.65280.41830.067*
C110.34414 (16)0.39908 (17)0.17349 (9)0.0519 (4)
H110.26200.43710.17670.062*
C120.35305 (16)0.29398 (17)0.13731 (9)0.0531 (4)
C130.46934 (18)0.23397 (16)0.13272 (9)0.0525 (4)
H130.47440.16040.10870.063*
C140.57883 (16)0.28467 (15)0.16437 (8)0.0456 (4)
H140.65960.24400.16210.055*
C150.80824 (14)0.45528 (14)0.19264 (8)0.0401 (3)
C160.81702 (16)0.43718 (15)0.11334 (8)0.0468 (4)
H16A0.73020.41540.09380.056*
H16B0.87780.37160.10350.056*
C170.86446 (14)0.54878 (15)0.07714 (8)0.0446 (4)
H17A0.87380.53330.02570.053*
H17B0.79840.61160.08260.053*
C180.97594 (15)0.61314 (15)0.18277 (8)0.0445 (4)
H18A0.91080.67640.18970.053*
H18B1.06040.64120.20240.053*
C190.93417 (14)0.50352 (15)0.22298 (8)0.0440 (4)
H19A1.00300.44260.21990.053*
H19B0.92270.52330.27380.053*
C201.02633 (15)0.69742 (15)0.06862 (8)0.0462 (4)
H20A0.96310.76060.07950.055*
H20B1.02150.68230.01680.055*
C211.16119 (15)0.73962 (13)0.08791 (8)0.0412 (3)
C221.17979 (18)0.84145 (16)0.12707 (10)0.0566 (4)
H221.10460.88290.14210.068*
C231.39933 (18)0.82602 (18)0.12289 (10)0.0604 (5)
H231.48310.85630.13500.072*
C241.39372 (16)0.72266 (16)0.08313 (9)0.0485 (4)
C251.27098 (15)0.67932 (15)0.06625 (8)0.0432 (3)
H251.26210.60830.03980.052*
C261.51532 (18)0.6591 (2)0.06151 (12)0.0698 (6)
H26A1.50560.57450.07090.105*
H26B1.58990.68970.08890.105*
H26C1.52970.67150.01070.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0574 (3)0.1179 (5)0.0722 (3)0.0312 (3)0.0097 (2)0.0091 (3)
N10.0462 (7)0.0604 (8)0.0386 (7)0.0055 (6)0.0025 (5)0.0016 (6)
N20.0342 (6)0.0489 (7)0.0344 (6)0.0019 (5)0.0044 (5)0.0008 (5)
N30.0712 (11)0.0625 (10)0.0716 (11)0.0165 (8)0.0050 (8)0.0175 (8)
C10.0391 (7)0.0420 (8)0.0349 (7)0.0004 (6)0.0034 (6)0.0015 (6)
C20.0383 (7)0.0460 (8)0.0356 (7)0.0052 (6)0.0056 (6)0.0020 (6)
C30.0457 (8)0.0445 (8)0.0430 (8)0.0044 (7)0.0067 (6)0.0008 (7)
C40.0605 (10)0.0402 (8)0.0523 (9)0.0026 (7)0.0079 (7)0.0035 (7)
C50.0476 (9)0.0516 (9)0.0469 (9)0.0087 (7)0.0051 (7)0.0107 (7)
C60.0408 (8)0.0505 (9)0.0364 (7)0.0010 (6)0.0049 (6)0.0099 (6)
C70.0396 (7)0.0459 (8)0.0330 (7)0.0040 (6)0.0050 (6)0.0063 (6)
C80.0623 (11)0.0736 (12)0.0367 (8)0.0052 (9)0.0012 (7)0.0043 (8)
C90.0730 (12)0.0789 (13)0.0362 (8)0.0016 (10)0.0048 (8)0.0107 (8)
C100.0629 (11)0.0555 (10)0.0493 (9)0.0025 (8)0.0084 (8)0.0122 (8)
C110.0392 (8)0.0706 (11)0.0459 (9)0.0030 (7)0.0033 (7)0.0087 (8)
C120.0449 (9)0.0717 (12)0.0427 (8)0.0173 (8)0.0017 (7)0.0056 (8)
C130.0598 (10)0.0542 (10)0.0435 (9)0.0123 (8)0.0018 (7)0.0012 (7)
C140.0449 (8)0.0495 (9)0.0426 (8)0.0014 (7)0.0037 (6)0.0019 (7)
C150.0386 (7)0.0457 (8)0.0360 (7)0.0022 (6)0.0034 (6)0.0008 (6)
C160.0451 (8)0.0584 (10)0.0370 (8)0.0105 (7)0.0075 (6)0.0078 (7)
C170.0387 (8)0.0608 (10)0.0343 (7)0.0050 (7)0.0030 (6)0.0020 (7)
C180.0418 (8)0.0552 (9)0.0364 (7)0.0072 (7)0.0024 (6)0.0051 (7)
C190.0394 (8)0.0564 (9)0.0364 (7)0.0036 (7)0.0023 (6)0.0012 (7)
C200.0411 (8)0.0540 (9)0.0436 (8)0.0003 (7)0.0021 (6)0.0062 (7)
C210.0443 (8)0.0447 (8)0.0348 (7)0.0038 (6)0.0048 (6)0.0052 (6)
C220.0586 (10)0.0550 (10)0.0563 (10)0.0035 (8)0.0110 (8)0.0088 (8)
C230.0531 (10)0.0690 (12)0.0589 (10)0.0227 (9)0.0024 (8)0.0007 (9)
C240.0437 (8)0.0598 (10)0.0420 (8)0.0050 (7)0.0037 (6)0.0096 (7)
C250.0470 (8)0.0472 (8)0.0356 (7)0.0027 (7)0.0021 (6)0.0007 (6)
C260.0456 (10)0.0882 (15)0.0758 (13)0.0045 (10)0.0078 (9)0.0121 (11)
Geometric parameters (Å, º) top
Cl1—C121.7465 (17)C12—C131.378 (3)
N1—C21.343 (2)C13—H130.9500
N1—C81.340 (2)C13—C141.388 (2)
N2—C171.4597 (18)C14—H140.9500
N2—C181.4688 (18)C15—C161.510 (2)
N2—C201.465 (2)C15—C191.508 (2)
N3—C221.334 (2)C16—H16A0.9900
N3—C231.330 (3)C16—H16B0.9900
C1—C21.4973 (19)C16—C171.520 (2)
C1—C71.499 (2)C17—H17A0.9900
C1—C151.341 (2)C17—H17B0.9900
C2—C31.397 (2)C18—H18A0.9900
C3—C41.505 (2)C18—H18B0.9900
C3—C101.382 (2)C18—C191.520 (2)
C4—H4A0.9900C19—H19A0.9900
C4—H4B0.9900C19—H19B0.9900
C4—C51.527 (2)C20—H20A0.9900
C5—H5A0.9900C20—H20B0.9900
C5—H5B0.9900C20—C211.504 (2)
C5—C61.514 (2)C21—C221.381 (2)
C6—C71.411 (2)C21—C251.385 (2)
C6—C111.398 (2)C22—H220.9500
C7—C141.399 (2)C23—H230.9500
C8—H80.9500C23—C241.391 (3)
C8—C91.375 (3)C24—C251.385 (2)
C9—H90.9500C24—C261.503 (2)
C9—C101.380 (3)C25—H250.9500
C10—H100.9500C26—H26A0.9800
C11—H110.9500C26—H26B0.9800
C11—C121.376 (3)C26—H26C0.9800
C8—N1—C2116.94 (15)C1—C15—C19123.97 (13)
C17—N2—C18109.52 (11)C19—C15—C16111.07 (12)
C17—N2—C20108.51 (12)C15—C16—H16A109.5
C20—N2—C18110.72 (12)C15—C16—H16B109.5
C23—N3—C22116.29 (16)C15—C16—C17110.72 (13)
C2—C1—C7115.02 (12)H16A—C16—H16B108.1
C15—C1—C2121.55 (13)C17—C16—H16A109.5
C15—C1—C7123.42 (13)C17—C16—H16B109.5
N1—C2—C1117.81 (13)N2—C17—C16112.43 (13)
N1—C2—C3123.49 (14)N2—C17—H17A109.1
C3—C2—C1118.70 (14)N2—C17—H17B109.1
C2—C3—C4119.01 (14)C16—C17—H17A109.1
C10—C3—C2117.46 (15)C16—C17—H17B109.1
C10—C3—C4123.53 (15)H17A—C17—H17B107.9
C3—C4—H4A109.1N2—C18—H18A109.3
C3—C4—H4B109.1N2—C18—H18B109.3
C3—C4—C5112.33 (13)N2—C18—C19111.77 (13)
H4A—C4—H4B107.9H18A—C18—H18B107.9
C5—C4—H4A109.1C19—C18—H18A109.3
C5—C4—H4B109.1C19—C18—H18B109.3
C4—C5—H5A107.7C15—C19—C18110.78 (13)
C4—C5—H5B107.7C15—C19—H19A109.5
H5A—C5—H5B107.1C15—C19—H19B109.5
C6—C5—C4118.39 (13)C18—C19—H19A109.5
C6—C5—H5A107.7C18—C19—H19B109.5
C6—C5—H5B107.7H19A—C19—H19B108.1
C7—C6—C5126.49 (14)N2—C20—H20A108.9
C11—C6—C5115.21 (14)N2—C20—H20B108.9
C11—C6—C7118.30 (15)N2—C20—C21113.25 (12)
C6—C7—C1123.78 (14)H20A—C20—H20B107.7
C14—C7—C1117.58 (13)C21—C20—H20A108.9
C14—C7—C6118.61 (14)C21—C20—H20B108.9
N1—C8—H8118.1C22—C21—C20120.91 (15)
N1—C8—C9123.86 (17)C22—C21—C25117.57 (15)
C9—C8—H8118.1C25—C21—C20121.50 (14)
C8—C9—H9120.9N3—C22—C21124.46 (17)
C8—C9—C10118.27 (16)N3—C22—H22117.8
C10—C9—H9120.9C21—C22—H22117.8
C3—C10—H10120.0N3—C23—H23117.6
C9—C10—C3119.98 (17)N3—C23—C24124.82 (16)
C9—C10—H10120.0C24—C23—H23117.6
C6—C11—H11119.4C23—C24—C26121.46 (17)
C12—C11—C6121.26 (16)C25—C24—C23116.89 (16)
C12—C11—H11119.4C25—C24—C26121.63 (17)
C11—C12—Cl1119.57 (14)C21—C25—C24119.96 (15)
C11—C12—C13121.51 (15)C21—C25—H25120.0
C13—C12—Cl1118.91 (15)C24—C25—H25120.0
C12—C13—H13121.1C24—C26—H26A109.5
C12—C13—C14117.74 (17)C24—C26—H26B109.5
C14—C13—H13121.1C24—C26—H26C109.5
C7—C14—H14118.8H26A—C26—H26B109.5
C13—C14—C7122.50 (16)H26A—C26—H26C109.5
C13—C14—H14118.8H26B—C26—H26C109.5
C1—C15—C16124.75 (14)
Cl1—C12—C13—C14177.98 (13)C7—C1—C15—C165.0 (2)
N1—C2—C3—C4179.86 (14)C7—C1—C15—C19179.20 (14)
N1—C2—C3—C100.6 (2)C7—C6—C11—C120.7 (2)
N1—C8—C9—C100.4 (3)C8—N1—C2—C1179.61 (14)
N2—C18—C19—C1556.69 (17)C8—N1—C2—C30.0 (2)
N2—C20—C21—C22109.94 (17)C8—C9—C10—C30.2 (3)
N2—C20—C21—C2571.12 (18)C10—C3—C4—C5106.83 (19)
N3—C23—C24—C250.3 (3)C11—C6—C7—C1179.20 (13)
N3—C23—C24—C26178.44 (19)C11—C6—C7—C142.9 (2)
C1—C2—C3—C40.3 (2)C11—C12—C13—C141.7 (3)
C1—C2—C3—C10179.00 (14)C12—C13—C14—C70.6 (2)
C1—C7—C14—C13179.02 (14)C15—C1—C2—N168.7 (2)
C1—C15—C16—C17122.92 (17)C15—C1—C2—C3111.71 (17)
C1—C15—C19—C18122.30 (16)C15—C1—C7—C6126.93 (17)
C2—N1—C8—C90.5 (3)C15—C1—C7—C1455.1 (2)
C2—C1—C7—C652.68 (19)C15—C16—C17—N255.82 (17)
C2—C1—C7—C14125.27 (15)C16—C15—C19—C1852.61 (17)
C2—C1—C15—C16174.60 (14)C17—N2—C18—C1959.11 (16)
C2—C1—C15—C190.4 (2)C17—N2—C20—C21172.79 (13)
C2—C3—C4—C572.40 (19)C18—N2—C17—C1658.83 (17)
C2—C3—C10—C90.7 (3)C18—N2—C20—C2166.99 (16)
C3—C4—C5—C661.48 (19)C19—C15—C16—C1751.94 (18)
C4—C3—C10—C9179.93 (17)C20—N2—C17—C16179.79 (13)
C4—C5—C6—C75.9 (2)C20—N2—C18—C19178.72 (12)
C4—C5—C6—C11173.99 (14)C20—C21—C22—N3178.84 (17)
C5—C6—C7—C10.7 (2)C20—C21—C25—C24178.02 (14)
C5—C6—C7—C14177.28 (14)C22—N3—C23—C240.5 (3)
C5—C6—C11—C12179.44 (14)C22—C21—C25—C241.0 (2)
C6—C7—C14—C132.9 (2)C23—N3—C22—C210.6 (3)
C6—C11—C12—Cl1178.00 (12)C23—C24—C25—C211.0 (2)
C6—C11—C12—C131.6 (3)C25—C21—C22—N30.1 (3)
C7—C1—C2—N1111.69 (16)C26—C24—C25—C21179.15 (15)
C7—C1—C2—C367.92 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···N10.992.603.229 (2)121
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···N10.992.603.229 (2)121.3
Acknowledgements top

HSY thanks the UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

references
References top

Agarwal, R., Bhirud, S. B., Bijukumar, G. & Khude, G. D. (2008). Synth. Commun. 38, 122–127.

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Kean, S. J. & Plosker, G. L. (2007). Drugs, 67, 457–474.

Merlos, M., Giral, M., Balsa, D., Ferrando, R., Queralt, M., Puigdemont, A., Garcia-Rafanell, J. & Forn, J. (1997). J. Pharmacol. Exp. Ther. 280, 114–121.

Mullol, J., Bousquet, J., Bachert, C., Canonica, W. G., Gimenez-Arnau, A., Kowalski, M. L., Martí-Guadaño, E., Maurer, M., Picado, C., Scadding, G. & Van Cauwenberge, P. (2008). Allergy, 63, 5–28.

Picado, C. (2006). Expert Opin. Pharmacother. 7, 1989–2001.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.