[Journal logo]

Volume 69 
Part 6 
Pages o865-o866  
June 2013  

Received 19 March 2013
Accepted 6 May 2013
Online 11 May 2013

Key indicators
Single-crystal X-ray study
T = 90 K
Mean [sigma](C-C) = 0.014 Å
R = 0.040
wR = 0.081
Data-to-parameter ratio = 12.4
Details
Open access

Tetraphenylphosphonium iodide-1,3,5-trifluoro-2,4,6-triiodobenzene-methanol (3/4/1)

aNFMLab, Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Via Mancinelli, 7, I-20131 Milano, Italy
Correspondence e-mail: giancarlo.terraneo@polimi.it

The crystallization of a 1:1 molar solution of 1,3,5-trifluoro-2,4,6-diiodobenzene (TFTIB) and tetraphenylphosponium iodide (TPPI) from methanol produced tetragonal needles of pure TPPI and tabular pseudo-hexagonal truncated bipyramids of the title compound, 3C24H20P+·3I-·4C6F3I3·CH4O or (TPPI)3(TFTIB)4·MeOH. The asymmetric unit is composed of six TPPI molecules, eight TFTIB molecules and two methanol molecules, overall 16 constituents. The formation of the architecture is essentially guided by a number of C-I...I- halogen bonds (XB), whose lengths are in the range 3.276 (1)-3.625 (1) Å. Layers of supramolecular polyanions are formed parallel to (10-1) wherein iodide anions function as penta-, tetra- or bidentate XB acceptors. The structure is not far from being P21/n, but the centrosymmetry is lost due to a different conformation of a single couple of cations and the small asymmetry in the formed supramolecular anion. One methanol molecule is hydrogen bonded to an iodide anion, while the second is linked to the first one via an O-H...O contact. This second methanol molecule is more loosely pinned in its position than the first and presents very high anisotropic displacement parameters and a seeming shortening of the C-O bond length. The crystal studied was refined as a perfect inversion twin.

Related literature

For the structure of pure TPPI, see: Schweizer et al. (1989[Schweizer, E. E., Baldacchini, C. J. & Rheingold, A. L. (1989). Acta Cryst. C45, 1236-1239.]), for the structure of pure TFTIB, see: Nath et al. (2008[Nath, N. K., Saha, B. K. & Nangia, A. (2008). New J. Chem. 32, 1693-1701.]); Reddy et al. (2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]) and for the structure of TPPI/TFTIB·CHCl3, see: Metrangolo et al. (2008[Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Chem. Commun. pp. 1635-1637.], 2009[Metrangolo, P., Pilati, T., Terraneo, G., Biella, S. & Resnati, G. (2009). Chem. Soc. Rev. pp. 1687-1696.]). For the use of TFTIB in crystal engineering based on halogen bonding, see: Lucassen et al. (2007[Lucassen, A. C. B., Karton, A., Leitus, G., Shimon, L. J. W., Martin, J. M. L. & van der Boom, M. E. (2007). Cryst. Growth Des. 7, 386-292.]).

[Scheme 1]

Experimental

Crystal data
  • 3C24H20P+·3I-·4C6F3I3·CH4O

  • Mr = 3469.89

  • Monoclinic, P 21

  • a = 17.233 (3) Å

  • b = 22.001 (4) Å

  • c = 28.260 (5) Å

  • [beta] = 92.49 (2)°

  • V = 10704 (3) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 4.45 mm-1

  • T = 90 K

  • 0.34 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998)[Bruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.614, Tmax = 1.000

  • 105822 measured reflections

  • 28547 independent reflections

  • 26385 reflections with I > 2[sigma](I)

  • Rint = 0.047

Refinement
  • R[F2 > 2[sigma](F2)] = 0.040

  • wR(F2) = 0.081

  • S = 1.09

  • 28547 reflections

  • 2304 parameters

  • 13 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 2.46 e Å-3

  • [Delta][rho]min = -0.89 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C20I-H20I...I3i 0.95 3.16 3.866 (9) 133
C20L-H20L...I6 0.95 3.09 3.821 (9) 135
C14M-H14M...I3ii 0.95 3.14 3.788 (9) 127
C8L-H8L...F3Fi 0.95 2.59 3.351 (10) 138
C20L-H20L...I6 0.95 3.09 3.821 (9) 135
C18M-H18M...F2Ciii 0.95 2.56 3.257 (11) 130
C18L-H18L...O2S 0.95 2.61 3.25 (2) 125
O1S-H1S...I1 0.85 2.71 3.561 (15) 177
O2S-H2S...O1S 0.85 1.83 2.68 (3) 176
Symmetry codes: (i) x-1, y, z; (ii) x-1, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].

Table 2
Short C-I...I- contacts and XBs (Å, °)

The table is organized to evidence the difference between the two pseudo-centrosymmetric units: similar contacts are on the same line and are also reported even if they are too long to be considered as XBs.

C-X...Y X...Y C-X...Y C-X...Y X...Y C-X...Y
C1A-I1A...I1 3.5318 (10) 175.26 (3) C1E-I1E...I4 3.5567 (10) 177.55 (3)
C3E-I2E...I1 3.6860 (10) 169.40 (3) C3A-I2A...I4 3.5578 (11) 173.31 (3)
C1B-I1B...I1 3.4466 (9) 169.04 (3) C1F-I1F...I4 3.4131 (10) 168.78 (3)
C3G-I2G...I1 3.4582 (10) 169.32 (2) C3C-I2C...I4 3.4102 (10) 172.40 (3)
C5A-I3A...I2 3.4725 (10) 167.88 (3) C5E-I3E...I5 3.4221 (10) 174.57 (3)
C3D-I2D...I2 3.4963 (10) 174.57 (3) C3H-I2H...I5 3.5754 (10) 168.90 (3)
C5Bi-I3Bi...I2 3.5678 (10) 171.87 (3) C5Fii-I3Fii...I5 3.5696 (10) 160.64 (3)
C5Ci-I3Ci...I2 3.5029 (9) 164.46 (3) C5Gii-I3Gii...I5 3.6253 (10) 157.18 (3)
C5Di-I3Di...I2 3.6906 (10) 176.88 (3) C5Hii-I3Hii...I5 4.0145 (11) 166.52 (3)
C1C-I1C...I3 3.2760 (9) 179.47 (3) C1Hii-I1Hii...I3 3.3977 (10) 178.17 (3)
C1G-I1G...I6 3.2889 (9) 172.31 (3) C1Di-I1Di...I6 3.4609 (10) 172.84 (3)
Symmetry codes: (i) 1-x, [{1\over 2}+y], 1-z; (ii) 2-x, [-{1\over 2}+y], 2-z.

Data collection: APEX2 (Bruker, 1998[Bruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL2012.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2426 ).


Acknowledgements

GC, PM, GR and GT acknowledge the Fondazione Cariplo (projects 2009-2550 and 2010-1351) and "5 × 1000 junior project" for financial support.

References

Bruker (1998). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  [CrossRef] [details]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Lucassen, A. C. B., Karton, A., Leitus, G., Shimon, L. J. W., Martin, J. M. L. & van der Boom, M. E. (2007). Cryst. Growth Des. 7, 386-292.  [CSD] [CrossRef] [ChemPort]
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  [ISI] [CrossRef] [ChemPort] [details]
Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Chem. Commun. pp. 1635-1637.  [CSD] [CrossRef]
Metrangolo, P., Pilati, T., Terraneo, G., Biella, S. & Resnati, G. (2009). Chem. Soc. Rev. pp. 1687-1696.
Nath, N. K., Saha, B. K. & Nangia, A. (2008). New J. Chem. 32, 1693-1701.  [ISI] [CSD] [CrossRef] [ChemPort]
Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.  [CSD] [CrossRef] [PubMed] [ChemPort]
Schweizer, E. E., Baldacchini, C. J. & Rheingold, A. L. (1989). Acta Cryst. C45, 1236-1239.  [CrossRef] [details]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [details]


Acta Cryst (2013). E69, o865-o866   [ doi:10.1107/S1600536813012397 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.