Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(Prop-2-en-1-yl)-3-{[3-(pyridin-4-yl)-4,5-dihydroisoxazol-5-yl]methyl}-1*H*anthra[1,2-*d*]imidazole-2,6,11(3*H*)trione

Zahra Afrakssou,^a* Youssef Kandri Rodia,^a Frédéric Capet,^b El Mokhtar Essassi,^c Christian Rolando^d and Lahcen El Ammari^e

^aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed, Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202 Fès, Morocco, ^bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181 Ecole Nationale Supérieure de Chimie de Lille, France, ^cLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, ^dUSR 3290 Miniaturisation pour l'Analyse, la Synthèse et la Protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille 1, France, and ^eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco Correspondence e-mail: afrassou@yahoo.fr

Received 13 May 2013; accepted 17 May 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.148; data-to-parameter ratio = 17.9.

The fused five- and three six-membered rings of the anthra[1,2-d]imidazoletrione part of the title compound, $C_{27}H_{20}N_4O_4$, show two different substituents at the imidazole N atoms, *viz.* an allyl group and a [3-(pyridin-4-yl)-4,5-dihydroisoxazol-5-yl]methyl group. The fused-ring system is approximately planar [r.m.s. deviation = 0.232 (2) Å], but is slightly buckled along the common edge of the two pairs of adjacent rings, with a dihedral angle between them of 11.17 (6)°. The isoxazole ring makes dihedral angles of 27.2 (2) and 12.7 (2)° with the imidazole and pyridine rings, respectively. Weak C-H···O and C-H···N hydrogen bonds ensure the cohesion of the crystal structure, forming a three-dimensional network.

Related literature

For the use of anthraquinone as an organic redox mediator, see: Campos-Martin *et al.* (2006); Harish *et al.* (2009); Jürmann *et al.* (2007); Manisankar & Gomathi (2005). For the biological activity of anthraquinone derivatives, see: Henderson *et al.* (1998); Barasch *et al.* (1999); Dou *et al.* (2009). For background to pH sensor applications, see: Wong *et al.* (2004); Lafitte *et al.* (2008); Wildgoose *et al.* (2003). For similar compounds, see: Afrakssou *et al.* (2010, 2011).

Experimental

Crystal data

 $\begin{array}{l} C_{27}H_{20}N_4O_4\\ M_r = 464.47\\ \text{Triclinic, }P\overline{1}\\ a = 8.0930 \ (2) \text{ Å}\\ b = 12.1191 \ (3) \text{ Å}\\ c = 12.2743 \ (2) \text{ Å}\\ \alpha = 87.109 \ (1)^\circ\\ \beta = 73.612 \ (1)^\circ \end{array}$

Data collection

Bruker APEXII CCD diffractometer 36799 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.148$ S = 1.025659 reflections $\gamma = 72.283 (1)^{\circ}$ $V = 1099.35 (4) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K $0.14 \times 0.10 \times 0.08 \text{ mm}$

5659 independent reflections 3900 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$

316 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.37$ e Å⁻³ $\Delta \rho_{min} = -0.20$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3\cdots N3^{i}$	0.93	2.58	3.471 (2)	160
$C3-H3\cdots O4^{i}$	0.93	2.67	3.470 (2)	145
$C19-H19A\cdotsO3^{ii}$ $C21-H21A\cdotsO3^{ii}$	0.97	2.56	3.3356 (19)	137
	0.97	2.45	3.350 (2)	154

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 3, -y, -z + 2.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2433).

References

- Afrakssou, Z., Haoudi, A., Capet, F., Rolando, C. & El Ammari, L. (2011). *Acta Cryst.* E67, 01363–01364.
- Afrakssou, Z., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, 01851.
- Barasch, D., Zipori, O., Ringel, I., Ginsbury, I., Samuni, A. & Katzhendler, J. (1999). Eur. J. Med. Chem. 34, 597–615.

- Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. (2006). Angew. Chem. Int. Ed. 45, 6962–6984.
- Dou, Y., Haswell, S., Greenman, J. & Wadhawan, J. (2009). Electrochem. Commun. 11, 1976–1981.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Harish, S., Sridharan, D., Kumar, S. S., Joseph, J. & Phani, K. L. N. (2009). *Electrochim. Acta*, 54, 3618–3622.
- Henderson, P. T., Armitage, B. & Schuster, G. B. (1998). *Biochemistry*, **37**, 2991–3000.
- Jürmann, G., Schiffrin, D. J. & Tammeveski, K. (2007). Electrochim. Acta, 53, 390–399.
- Lafitte, V. G. H., Wang, W., Yashina, A. S. & Lawrence, N. S. (2008). *Electrochem. Commun.* **10**, 1831–1834.
- Manisankar, P. & Gomathi, A. (2005). J. Mol. Catal. A Chem. 232, 45-52.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wildgoose, G. G., Pandurangappa, M., Lawrence, N. S., Jiang, L., Jones, T. G. J. & Compton, R. G. (2003). *Talanta*, **60**, 887–893.
- Wong, E. L. S., Erohkin, P. & Gooding, J. J. (2004). Electrochem. Commun. 6, 648–654.

supporting information

Acta Cryst. (2013). E69, o945-o946 [doi:10.1107/S160053681301369X]

1-(Prop-2-en-1-yl)-3-{[3-(pyridin-4-yl)-4,5-dihydroisoxazol-5-yl]methyl}-1*H*-anthra[1,2-*d*]imidazole-2,6,11(3*H*)-trione

Zahra Afrakssou, Youssef Kandri Rodia, Frédéric Capet, El Mokhtar Essassi, Christian Rolando and Lahcen El Ammari

S1. Comment

Anthraquinone is a versatile organic redox mediator and is useful for applications such as selective H₂O₂ production through oxygen reduction reaction (Campos-Martin *et al.*, 2006); photo-cleavage of DNA (Henderson *et al.*, 1998); anticancer activity (anthraquinone as central building block) (Barasch *et al.*, 1999) and enzyme/mediator (Dou *et al.*, 2009) *etc.* Similarly, electrodes that were chemically modified with anthraquinone were useful for several electrochemical (Harish *et al.*, 2009); electrocatalytic (Jürmann *et al.*, 2007; Manisankar *et al.*, 2005); and pH sensor applications (Wong *et al.*, 2004; Lafitte *et al.*, 2008; Wildgoose *et al.*, 2003).

In this work, we aim to prepare new derivatives of anthra [1,2-d]imidazole- 2,6,11–trione for biological activities. In a previous study we have synthesized the 1,3-diallyl-1*H*-anthra [1,2-d] imidazole-2,6,11(3*H*)-trione (Afrakssou *et al.*, 2010), and, here we have focused in the reactivity of the exocyclic C=C bond of the allyl substituent towards nitriloxides (Afrakssou *et al.*, 2011). The latter are produced as intermediates in the dehydrohalogenation of (*E*)-isonicotinaldehyde oxime by a solution of sodium hypochlorite. The oxime then reacts with 1, 3-diallyl-1*H*-anthra [1, 2 - d] imidazole-2, 6, 11(3*H*)-trione in a biphasic medium (water-chloroform) at 273 K during 4 h to a unique cycloadduct 1- allyl-3-((3-(pyridin-4-yl)-4,5-dihydroisoxazol-5-yl)methyl)- 1*H*-anthra[1,2-d]imidazole-2,6,11(3*H*)-trione (Scheme 1).

The molecule of title compound, $C_{27}H_{20}N_4O_4$, contains four fused rings, three are six-membered rings and one is the five-membered imidazole ring. The imidazole ring is on one side attached to the allyl chain and on the other side to a (3-(pyridin-4-yl)-4,5-dihydroisoxazol-5-yl)methyl group (Fig.1). The fused ring system is almost planar with the largest deviation from the mean plane being 0.232 (2) A° at C7. In this system, the two pairs of adjacent rings are slightly folded along the common edge (C8–C9) making a dihedral angle of 11.17 (6) °. The isoxazole (N3-O4-C20-C21-C22) ring makes dihedral angles of 27.2 (2) ° and 12.7 (2) ° with the imidazole (N1-N2-C11-C12-C15) and pyridine (N4-C23 to C27) rings, respectively.

Weak intermolecular C19–H19A···O3, C21–H21A···O3, C3–H3···O4 and C3–H3···N3 hydrogen bondings ensures the cohesion of the crystal structure as shown in Fig. 2 and Table 2.

S2. Experimental

To a solution of 1,3-diallyl-1*H*-anthra[1,2-*d*]imidazole-2,6,11(3*H*) -trione (0.5 g, 1.45 mmol) and (*E*)-isonicotinaldehyde oxime (0.44 g, 3.62 mmol) in chloroform (16 ml) was added dropwise a 24% sodium hypochlorite solution (8 ml) at 273 K. Stirring was continued for 4 h. The organic layer was dried over Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was then purified by column chromatography on silica gel using a mixture of hexane/ethyl acetate (1/1) as eluent. The yield of the reaction is of 51%. Orange crystals were isolated after the solvent was allowed to

evaporate.

S3. Refinement

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93 Å (aromatic and methyne), and C—H = 0.97 Å (methylene) and refined as riding on their parent atoms with $U_{iso}(H) = 1.2 U_{eq}$ (C).

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Figure 2

Intermolecular interactions in the title compound. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 3, -y, -z + 2.

1-(Prop-2-en-1-yl)-3-{[3-(pyridin-4-yl)-4,5-dihydroisoxazol-5-yl]methyl}-1*H*-anthra[1,2-*d*]imidazole-2,6,11(3*H*)-trione

Crystal data	
$C_{27}H_{20}N_4O_4$ $M_r = 464.47$ Triclinic, P1 Hall symbol: -P 1 a = 8.0930 (2) Å b = 12.1191 (3) Å c = 12.2743 (2) Å a = 87.109 (1)° $\beta = 73.612$ (1)° $\gamma = 72.283$ (1)°	Z = 2 F(000) = 484 $D_x = 1.403 \text{ Mg m}^{-3}$ Melting point: 443 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8485 reflections $\theta = 2.8-26.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K Block, orange
$p = 1099.55 (4) \text{ A}$ Data collection Bruker APEXII CCD diffractometer Radiation source: microfocus source Graphite monochromator φ and ω scans 36799 measured reflections 5659 independent reflections	3900 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 28.7^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -10 \rightarrow 10$ $k = -16 \rightarrow 16$ $l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.148$	H-atom parameters constrained
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0711P)^2 + 0.2464P]$
5659 reflections	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
316 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta ho_{ m max} = 0.37$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
direct methods	

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.5114 (2)	0.62606 (14)	1.11854 (16)	0.0495 (4)
C2	0.3824 (3)	0.73461 (16)	1.1261 (2)	0.0637 (5)
H2	0.3864	0.7808	1.0631	0.076*
C3	0.2504 (3)	0.77342 (18)	1.2256 (2)	0.0742 (7)
Н3	0.1658	0.8462	1.2302	0.089*
C4	0.2421 (3)	0.70528 (19)	1.3189 (2)	0.0739 (6)
H4	0.1509	0.7316	1.3860	0.089*
C5	0.3689 (3)	0.59784 (17)	1.31336 (19)	0.0637 (5)
Н5	0.3630	0.5521	1.3766	0.076*
C6	0.5051 (2)	0.55819 (14)	1.21343 (15)	0.0488 (4)
C7	0.6385 (2)	0.44158 (14)	1.20925 (14)	0.0463 (4)
C8	0.7922 (2)	0.40617 (13)	1.10555 (13)	0.0383 (3)
C9	0.7841 (2)	0.46768 (13)	1.00512 (13)	0.0417 (3)
C10	0.6459 (2)	0.58148 (15)	1.00850 (16)	0.0498 (4)
C11	0.93761 (19)	0.30551 (12)	1.09642 (12)	0.0362 (3)
C12	1.0529 (2)	0.26122 (13)	0.98806 (12)	0.0376 (3)
C13	1.0379 (2)	0.31860 (15)	0.89005 (13)	0.0464 (4)
H13	1.1144	0.2877	0.8194	0.056*
C14	0.9049 (2)	0.42393 (15)	0.90068 (14)	0.0478 (4)
H14	0.8960	0.4666	0.8363	0.057*
C15	1.1529 (2)	0.14078 (13)	1.11712 (13)	0.0382 (3)
C16	0.9718 (2)	0.24952 (15)	1.29631 (13)	0.0481 (4)
H16A	1.0353	0.1796	1.3274	0.058*
H16B	0.8438	0.2670	1.3348	0.058*
C17	1.0362 (3)	0.34735 (19)	1.31752 (16)	0.0659 (5)

H17	1 1552	0 3440	1 2807	0 079*
C18	0.0350 (5)	0.3440 0.4370(2)	1.2807 1.3844(2)	0.075 0.1064 (10)
H18A	0.9359 (5)	0.4370 (2)	1.3044 (2)	0.1004 (10)
LINA LINA	0.0836	0.4428	1.4223	0.128
C10	0.7650	0.4955	1.3742 0.01585 (12)	0.128°
	1.3113(2)	0.07707 (14)	0.91385 (15)	0.0418(4)
HI9A	1.4231	0.0492	0.9374	0.050*
HI9B C20	1.3300	0.02258 (14)	0.8450	0.050^{*}
C20	1.2483 (2)	-0.02358 (14)	0.89840 (13)	0.0426 (4)
H20	1.2199	-0.0630	0.9698	0.051*
C21	1.3846 (2)	-0.10974 (14)	0.80505 (14)	0.0473 (4)
H21A	1.5044	-0.1010	0.7885	0.057*
H21B	1.3904	-0.1891	0.8245	0.057*
C22	1.3037 (2)	-0.07338 (14)	0.70869 (13)	0.0433 (4)
C23	1.3916 (2)	-0.11054 (15)	0.58912 (14)	0.0464 (4)
C24	1.5579 (3)	-0.19406 (17)	0.55610 (16)	0.0622 (5)
H24	1.6145	-0.2309	0.6101	0.075*
C25	1.6397 (3)	-0.2224 (2)	0.44121 (19)	0.0754 (6)
H25	1.7517	-0.2789	0.4207	0.090*
C26	1.4083 (4)	-0.0959 (2)	0.39166 (17)	0.0716 (6)
H26	1.3550	-0.0618	0.3354	0.086*
C27	1.3145 (3)	-0.06123 (18)	0.50314 (15)	0.0581 (5)
H27	1.2015	-0.0057	0.5206	0.070*
N1	1.00212 (17)	0.22965 (11)	1.17475 (10)	0.0385 (3)
N2	1.17735 (17)	0.15961 (11)	1.00326 (10)	0.0391 (3)
N3	1.14308 (19)	-0.00366 (13)	0.73868 (12)	0.0502 (4)
N4	1.5695 (3)	-0.17468 (18)	0.35938 (15)	0.0773 (6)
01	0.61239 (19)	0.37492 (12)	1.28523 (12)	0.0702 (4)
02	0.6424 (2)	0.63732 (13)	0.92318 (13)	0.0750 (4)
03	1.24659 (15)	0.06244 (10)	1.15952 (9)	0.0478 (3)
04	1.08962 (15)	0.01876 (11)	0.85700 (10)	0.0524 (3)
	- (-)			- (-)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0437 (9)	0.0358 (8)	0.0712 (11)	-0.0073 (7)	-0.0243 (8)	0.0000 (8)
C2	0.0596 (12)	0.0400 (10)	0.0947 (15)	-0.0030 (8)	-0.0391 (11)	0.0001 (10)
C3	0.0565 (12)	0.0461 (11)	0.1142 (19)	0.0086 (9)	-0.0374 (12)	-0.0199 (12)
C4	0.0505 (11)	0.0595 (13)	0.0962 (17)	0.0019 (9)	-0.0117 (11)	-0.0244 (12)
C5	0.0499 (10)	0.0529 (11)	0.0731 (13)	-0.0035 (8)	-0.0046 (9)	-0.0098 (9)
C6	0.0404 (8)	0.0387 (9)	0.0618 (10)	-0.0068 (7)	-0.0107 (7)	-0.0039 (7)
C7	0.0421 (8)	0.0378 (8)	0.0510 (9)	-0.0075 (7)	-0.0056 (7)	0.0013 (7)
C8	0.0387 (8)	0.0332 (7)	0.0417 (8)	-0.0095 (6)	-0.0105 (6)	0.0011 (6)
C9	0.0428 (8)	0.0371 (8)	0.0479 (9)	-0.0112 (6)	-0.0186 (7)	0.0064 (6)
C10	0.0497 (9)	0.0415 (9)	0.0625 (11)	-0.0120 (7)	-0.0259 (8)	0.0115 (8)
C11	0.0379 (7)	0.0337 (7)	0.0350 (7)	-0.0096 (6)	-0.0086 (6)	0.0019 (6)
C12	0.0368 (7)	0.0378 (8)	0.0374 (7)	-0.0095 (6)	-0.0107 (6)	-0.0015 (6)
C13	0.0504 (9)	0.0511 (10)	0.0351 (8)	-0.0126 (8)	-0.0109 (7)	0.0002 (7)
C14	0.0559 (10)	0.0498 (10)	0.0400 (8)	-0.0161 (8)	-0.0184 (7)	0.0104 (7)

C15	0.0361 (7)	0.0371 (8)	0.0392 (8)	-0.0081 (6)	-0.0102 (6)	-0.0004 (6)
C16	0.0589 (10)	0.0446 (9)	0.0329 (8)	-0.0097 (8)	-0.0073 (7)	0.0039 (6)
C17	0.0908 (15)	0.0682 (13)	0.0444 (10)	-0.0304 (12)	-0.0208 (10)	0.0021 (9)
C18	0.173 (3)	0.0811 (18)	0.0647 (15)	-0.0454 (19)	-0.0226 (17)	-0.0155 (13)
C19	0.0333 (7)	0.0453 (9)	0.0395 (8)	-0.0044 (6)	-0.0055 (6)	-0.0059 (6)
C20	0.0400 (8)	0.0430 (8)	0.0386 (8)	-0.0065 (6)	-0.0079 (6)	-0.0011 (6)
C21	0.0465 (9)	0.0412 (9)	0.0468 (9)	-0.0034 (7)	-0.0109 (7)	-0.0057 (7)
C22	0.0423 (8)	0.0434 (9)	0.0439 (8)	-0.0153 (7)	-0.0083 (7)	-0.0019 (7)
C23	0.0532 (9)	0.0459 (9)	0.0426 (8)	-0.0237 (8)	-0.0075 (7)	-0.0013 (7)
C24	0.0672 (12)	0.0572 (11)	0.0503 (10)	-0.0154 (9)	-0.0008 (9)	-0.0049 (8)
C25	0.0807 (15)	0.0671 (14)	0.0613 (13)	-0.0206 (12)	0.0070 (11)	-0.0112 (11)
C26	0.1029 (18)	0.0818 (15)	0.0465 (10)	-0.0523 (15)	-0.0207 (11)	0.0064 (10)
C27	0.0685 (12)	0.0629 (12)	0.0505 (10)	-0.0312 (10)	-0.0166 (9)	0.0033 (9)
N1	0.0419 (7)	0.0348 (6)	0.0330 (6)	-0.0055 (5)	-0.0083 (5)	0.0013 (5)
N2	0.0373 (6)	0.0388 (7)	0.0349 (6)	-0.0040 (5)	-0.0078 (5)	-0.0020 (5)
N3	0.0441 (8)	0.0569 (9)	0.0486 (8)	-0.0131 (7)	-0.0127 (6)	-0.0051 (7)
N4	0.1033 (16)	0.0782 (13)	0.0495 (10)	-0.0441 (12)	-0.0005 (10)	-0.0073 (9)
01	0.0647 (8)	0.0511 (8)	0.0652 (8)	-0.0048 (6)	0.0122 (6)	0.0122 (6)
O2	0.0784 (10)	0.0606 (9)	0.0739 (9)	-0.0016 (7)	-0.0277 (8)	0.0263 (7)
O3	0.0435 (6)	0.0452 (6)	0.0494 (6)	-0.0029 (5)	-0.0168 (5)	0.0054 (5)
O4	0.0367 (6)	0.0643 (8)	0.0502 (7)	-0.0081 (5)	-0.0083 (5)	-0.0125 (6)

Geometric parameters (Å, °)

C1—C6	1.390 (3)	C16—C17	1.493 (3)
C1—C2	1.397 (2)	C16—H16A	0.9700
C1-C10	1.479 (3)	C16—H16B	0.9700
С2—С3	1.368 (3)	C17—C18	1.300 (3)
С2—Н2	0.9300	C17—H17	0.9300
С3—С4	1.376 (3)	C18—H18A	0.9300
С3—Н3	0.9300	C18—H18B	0.9300
C4—C5	1.382 (3)	C19—N2	1.4525 (18)
C4—H4	0.9300	C19—C20	1.511 (2)
С5—С6	1.387 (2)	C19—H19A	0.9700
С5—Н5	0.9300	C19—H19B	0.9700
С6—С7	1.487 (2)	C20—O4	1.453 (2)
С7—О1	1.218 (2)	C20—C21	1.525 (2)
С7—С8	1.479 (2)	C20—H20	0.9800
C8—C11	1.397 (2)	C21—C22	1.494 (2)
С8—С9	1.415 (2)	C21—H21A	0.9700
C9—C14	1.388 (2)	C21—H21B	0.9700
C9—C10	1.482 (2)	C22—N3	1.278 (2)
C10—O2	1.220 (2)	C22—C23	1.465 (2)
C11—N1	1.3943 (19)	C23—C24	1.380 (3)
C11—C12	1.412 (2)	C23—C27	1.393 (3)
C12—C13	1.376 (2)	C24—C25	1.389 (3)
C12—N2	1.3760 (19)	C24—H24	0.9300
C13—C14	1.381 (2)	C25—N4	1.315 (3)

C13—H13	0.9300	С25—Н25	0.9300
C14—H14	0.9300	C26—N4	1.326 (3)
C15—O3	1.2171 (18)	C26—C27	1.380 (3)
C15—N2	1.3726 (19)	С26—Н26	0.9300
C15—N1	1.3927 (19)	C27—H27	0.9300
C16—N1	1.4621 (19)	N3—O4	1.4084 (18)
C6—C1—C2	119.35 (18)	C18—C17—C16	123.9 (2)
C6-C1-C10	120.62 (15)	C18—C17—H17	118.1
C2-C1-C10	119.92 (17)	C16—C17—H17	118.1
C3—C2—C1	120.4 (2)	C17—C18—H18A	120.0
С3—С2—Н2	119.8	C17—C18—H18B	120.0
С1—С2—Н2	119.8	H18A—C18—H18B	120.0
C2—C3—C4	120.29 (19)	N2-C19-C20	111.63 (12)
С2—С3—Н3	119.9	N2—C19—H19A	109.3
С4—С3—Н3	119.9	С20—С19—Н19А	109.3
C3—C4—C5	120.2 (2)	N2—C19—H19B	109.3
C3—C4—H4	119.9	C20—C19—H19B	109.3
C5—C4—H4	119.9	H19A—C19—H19B	108.0
C4—C5—C6	120.1 (2)	O4—C20—C19	108.93 (13)
C4—C5—H5	120.0	O4—C20—C21	104.00 (12)
С6—С5—Н5	120.0	C19—C20—C21	112.82 (13)
C5—C6—C1	119.71 (17)	O4—C20—H20	110.3
C5—C6—C7	118.96 (17)	С19—С20—Н20	110.3
C1—C6—C7	121.30 (15)	C21—C20—H20	110.3
01—C7—C8	121.68 (15)	C22—C21—C20	100.34 (13)
O1—C7—C6	120.30 (15)	C22—C21—H21A	111.7
C8—C7—C6	117.76 (14)	C20—C21—H21A	111.7
C11—C8—C9	116.86 (13)	C22—C21—H21B	111.7
C11—C8—C7	123.26 (14)	C20—C21—H21B	111.7
C9—C8—C7	119.39 (14)	H21A—C21—H21B	109.5
C14—C9—C8	121.33 (15)	N3—C22—C23	120.26 (16)
C14—C9—C10	117.88 (15)	N3—C22—C21	113.77 (14)
C8—C9—C10	120.79 (15)	C23—C22—C21	125.98 (15)
O2—C10—C1	120.60 (16)	C24—C23—C27	116.82 (17)
O2—C10—C9	121.25 (17)	C24—C23—C22	121.28 (17)
C1—C10—C9	118.15 (15)	C27—C23—C22	121.87 (17)
N1—C11—C8	134.04 (13)	C23—C24—C25	119.1 (2)
N1—C11—C12	106.27 (12)	C23—C24—H24	120.4
C8—C11—C12	119.68 (13)	C25—C24—H24	120.4
C13—C12—N2	129.78 (14)	N4—C25—C24	124.4 (2)
C13—C12—C11	122.57 (14)	N4—C25—H25	117.8
N2-C12-C11	107.59 (13)	С24—С25—Н25	117.8
C12—C13—C14	117.41 (14)	N4—C26—C27	124.4 (2)
C12—C13—H13	121.3	N4—C26—H26	117.8
C14—C13—H13	121.3	C27—C26—H26	117.8
C13—C14—C9	121.59 (15)	C26—C27—C23	119.0 (2)
C13—C14—H14	119.2	С26—С27—Н27	120.5

C9—C14—H14	119.2	С23—С27—Н27	120.5
O3—C15—N2	126.58 (14)	C15—N1—C11	109.31 (12)
O3—C15—N1	126.66 (14)	C15—N1—C16	118.49 (13)
N2-C15-N1	106 75 (13)	$C_{11} = N_{1} = C_{16}$	129 16 (13)
N1 C16 C17	111 20 (12)	C_{15} N2 C_{12}	129.10(13)
	111.20 (13)	C15 - N2 - C12	109.90 (12)
NI—CIO—HIOA	109.4	C15—N2—C19	122.55 (13)
C17—C16—H16A	109.4	C12—N2—C19	127.42 (13)
N1—C16—H16B	109.4	C22—N3—O4	109.39 (13)
C17—C16—H16B	109.4	C25—N4—C26	116.19 (19)
H16A—C16—H16B	108.0	N3—O4—C20	108.52 (11)
C6-C1-C2-C3	-0.5(3)	N1-C16-C17-C18	1255(2)
$C_1 C_1 C_2 C_3$	175 70 (17)	N2 C10 C20 O4	123.3(2)
$C_{10} = C_{1} = C_{2} = C_{3}$	1/3.79(17)	$N_2 = C_{19} = C_{20} = C_{4}$	179(4(12))
C1 - C2 - C3 - C4	-0.7(3)	$N_2 - C_1 = C_2 - C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	1/8.04 (15)
C2_C3_C4_C5	1.0 (3)	04	18.17 (16)
C3—C4—C5—C6	-0.1 (3)	C19—C20—C21—C22	-99.71 (15)
C4—C5—C6—C1	-1.1 (3)	C20—C21—C22—N3	-12.02 (19)
C4—C5—C6—C7	-179.20 (18)	C20—C21—C22—C23	168.07 (15)
C2-C1-C6-C5	1.4 (3)	N3—C22—C23—C24	-173.79 (16)
C10-C1-C6-C5	-174.83 (17)	C21—C22—C23—C24	6.1 (3)
C2—C1—C6—C7	179.42 (16)	N3—C22—C23—C27	8.2 (3)
C10-C1-C6-C7	32(3)	C21—C22—C23—C27	-171 93 (16)
C_{5} C_{6} C_{7} O_{1}	11.5(3)	C_{27} C_{23} C_{24} C_{25}	1 2 (3)
$C_{1} = C_{0} = C_{1} = O_{1}$	166 50 (19)	$C_{27} = C_{23} = C_{24} = C_{25}$	1.2(3) 17602(17)
$C_1 = C_0 = C_1 = O_1$	-100.30(18)	$C_{22} = C_{23} = C_{24} = C_{25}$	-1/0.92(17)
$C_{3} = C_{0} = C_{1} = C_{8}$	=1/4.24(10)	C25-C24-C25-N4	0.0(3)
C1	7.7(2)	N4—C26—C27—C23	0.3 (3)
O1—C7—C8—C11	-13.9 (3)	C24—C23—C27—C26	-1.4 (3)
C6—C7—C8—C11	171.97 (15)	C22—C23—C27—C26	176.75 (16)
O1—C7—C8—C9	157.86 (17)	O3—C15—N1—C11	176.95 (15)
C6—C7—C8—C9	-16.3 (2)	N2-C15-N1-C11	-2.11 (16)
C11—C8—C9—C14	6.1 (2)	O3—C15—N1—C16	14.9 (2)
C7—C8—C9—C14	-166.19 (15)	N2-C15-N1-C16	-164.21 (13)
C11—C8—C9—C10	-173.72(14)	C8—C11—N1—C15	178.90 (16)
C7 - C8 - C9 - C10	140(2)	C12-C11-N1-C15	-0.01(16)
C_{1} C_{1} C_{10} C_{2}	174.24(18)	C_{8} C_{11} N_{1} C_{16}	-215(3)
$C_{0} = C_{1} = C_{10} = 0_{2}$	-20(2)	$C_{12} = C_{11} = N_1 = C_{10}$	21.5(3)
$C_2 = C_1 = C_{10} = C_2$	-2.0(3)	C12— $C11$ — $N1$ — $C15$	139.39(13)
	-5.8(2)	CI/CI6NICI5	99.02 (18)
C2-C1-C10-C9	178.01 (15)	C17—C16—N1—C11	-59.0 (2)
C14—C9—C10—O2	-2.8 (3)	O3—C15—N2—C12	-175.56 (15)
C8—C9—C10—O2	176.99 (16)	N1—C15—N2—C12	3.51 (17)
C14—C9—C10—C1	177.19 (15)	O3—C15—N2—C19	7.3 (2)
C8—C9—C10—C1	-3.0 (2)	N1-C15-N2-C19	-173.60 (13)
C9—C8—C11—N1	172.45 (16)	C13—C12—N2—C15	173.53 (16)
C7—C8—C11—N1	-15.6 (3)	C11—C12—N2—C15	-3.55 (17)
C9—C8—C11—C12	-8.8 (2)	C13—C12—N2—C19	-9.5 (3)
C7—C8—C11—C12	163.18 (14)	$C_{11} - C_{12} - N_{2} - C_{19}$	173.38 (13)
N1-C11-C12-C13	$-175\ 20\ (14)$	C_{20} C_{19} N_{2} C_{15}	78 33 (18)
C_{8} C_{11} C_{12} C_{13}	57(2)	C_{20} C_{19} N_{2} C_{12}	-98.24(18)
00 011 - 012 - 013	2.1 (4)	020 - 017 - 112 - 012	JU.27 (10)

supporting information

N1-C11-C12-N2	2.14 (16)	C23—C22—N3—O4	-179.88 (13)
C8—C11—C12—N2	-176.96 (13)	C21—C22—N3—O4	0.2 (2)
N2-C12-C13-C14	-176.07 (16)	C24—C25—N4—C26	-1.1 (3)
C11—C12—C13—C14	0.6 (2)	C27—C26—N4—C25	1.0 (3)
C12—C13—C14—C9	-3.5 (3)	C22—N3—O4—C20	12.78 (18)
C8—C9—C14—C13	0.1 (3)	C19—C20—O4—N3	100.89 (14)
C10—C9—C14—C13	179.91 (15)	C21—C20—O4—N3	-19.64 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
C3—H3…N3 ⁱ	0.93	2.58	3.471 (2)	160
C3—H3····O4 ⁱ	0.93	2.67	3.470 (2)	145
С19—Н19А…ОЗ ^{іі}	0.97	2.56	3.3356 (19)	137
C21—H21A···O3 ⁱⁱ	0.97	2.45	3.350 (2)	154

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*+3, -*y*, -*z*+2.