metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[Diaquasesqui(nitrato-κO)hemi-(perchlorato-κO)copper(II)]-μ-{bis[5methyl-3-(pyridin-2-yl)-1H-pyrazol-4-yl] selenide}-[triaqua(perchlorato-κO)copper(II)] nitrate monohydrate

Maksym Seredyuk,^a Vadim A. Pavlenko,^a* Kateryna O. Znovjyak,^a Elzbieta Gumienna-Kontecka^b and Turganbay S. Iskenderov^a

^aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, and ^bFaculty of Chemistry, University of Wroclaw, 14, F. Joliot-Curie Str., 50383, Wroclaw, Poland Correspondence e-mail: pavlenko_vadim@univ.kiev.ua

Received 22 March 2013; accepted 3 May 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.041; wR factor = 0.113; data-to-parameter ratio = 14.2.

In the binuclear title complex, $[Cu_2(ClO_4)_{1.5}(NO_3)_{1.5}]$ $(C_{18}H_{16}N_6Se)(H_2O)_5]NO_3 \cdot H_2O$, both Cu^{II} ions are hexacoordinated by O and N atoms, thus forming axially elongated CuO₄N₂ octahedra. The equatorial plane of each octahedron is formed by one chelating pyrazole-pyridine fragment of the organic ligand and two water molecules. The axial positions in one octahedron are occupied by a water molecule and a monodentately coordinated perchlorate anion, while those in the other are occupied by a nitrate anion and a disordered perchlorate/nitrate anion with equal site occupancy. The pyrazole-pyridine units of the organic selenide are transoriented to each other with a C-Se-C angle of 96.01 $(14)^{\circ}$. In the crystal, uncoordinated nitrate anions and the coordinating water molecules are involved in O-H···O and N- $H \cdots O$ hydrogen bonds, forming a bridge between the pyrazole group and the coordinating water molecules. Further $O-H \cdots O$ hydrogen bonds between the complex molecules and a π - π stacking interaction with a centroid-centroid distance of 3.834 (4) Å are also observed.

Related literature

For structural studies of related pyrazolylselenides, see: Seredyuk *et al.* (2010) and for structural studies of *d*-metal complexes of bis(3,5-dimethyl-1*H*-pyrazol-4-yl)selenide, see: Seredyuk *et al.* (2007). For related structures, see: Fritsky *et al.* (2004); Kanderal *et al.* (2005); Moroz *et al.* (2010).

 $\beta = 108.858 \ (5)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 2.67 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.073$

refinement

 $\Delta \rho_{\rm max} = 1.00 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.95 \text{ e} \text{ Å}^{-3}$

V = 1608.93 (16) Å³

 $0.30 \times 0.25 \times 0.12$ mm

11167 measured reflections

7085 independent reflections

5817 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\gamma = 93.494 \ (4)^{\circ}$

Z = 2

Experimental

Crystal data $\begin{bmatrix} Cu_2(ClO_4)_{1.5}(NO_3)_{1.5} \\
(C_{18}H_{16}N_6Se)(H_2O)_5 \end{bmatrix} NO_3 \cdot H_2O$ $M_r = 934.72$ Triclinic, $P\overline{1}$ a = 9.7233 (6) Å b = 13.1987 (7) Å c = 13.3217 (8) Å $\alpha = 93.510$ (4)°

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\rm min} = 0.468, T_{\rm max} = 0.728$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.113$ S = 1.027085 reflections 498 parameters 12 restraints

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H2 <i>O</i> 1···O10	0.83 (2)	1.93 (2)	2.737 (3)	164 (4)
O1−H1 <i>O</i> 1···O18 ⁱ	0.81 (2)	2.00(2)	2.801 (6)	174 (5)
$O1 - H1O1 \cdots O20^{i}$	0.81 (2)	1.99 (3)	2.747 (6)	155 (4)
$O2 - H1O2 \cdot \cdot \cdot O13^{ii}$	0.83(2)	1.85 (2)	2.660 (3)	163 (4)
$O2 - H2O2 \cdot \cdot \cdot O3^{iii}$	0.83 (2)	1.99 (2)	2.805 (4)	167 (4)
$O3-H1O3\cdots O11^{i}$	0.83(2)	2.03(2)	2.842 (4)	166 (4)
$O3-H1O3\cdots O12^{i}$	0.83 (2)	2.47 (3)	3.130 (4)	137 (4)
$O4-H1O4\cdots O10^{iv}$	0.83(2)	1.94 (2)	2.762 (3)	174 (4)
$O4 - H2O4 \cdots O1W^{v}$	0.84(2)	1.88 (2)	2.717 (4)	174 (5)
O5−H1 <i>O</i> 5···O13	0.82 (2)	1.87 (3)	2.617 (4)	150 (4)
O5−H2O5···O16	0.84(2)	1.97 (3)	2.719 (11)	148 (4)
O5−H2O5···O16	0.84(2)	1.97 (3)	2.719 (11)	148 (4)
$D5 - H2O5 \cdots O22$	0.84(2)	2.07 (3)	2.784 (10)	142 (4)
$O1W - H2W1 \cdots O6^{iv}$	0.83 (2)	2.10 (3)	2.800 (4)	142 (4)
$O1W - H1W1 \cdots O16^{vi}$	0.84 (2)	2.12 (3)	2.833 (9)	144 (4)
$O1W - H1W1 \cdots O22^{vi}$	0.84 (2)	2.23 (3)	2.977 (11)	149 (4)
N2−H1 <i>N</i> 2···O11	0.86	1.98	2.829 (4)	168
$N5 - H1N5 \cdots O1W$	0.86	1.94	2.762 (4)	160

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y + 1, z; (iii) -x, -y + 1, -z + 1; (iv) x, y - 1, z; (v) -x + 1, -y, -z + 1; (vi) x - 1, y, z.

m314 Seredyuk et al.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2009); software used to prepare material for publication: *SHELXL97*.

The financial support from the State Fund for Fundamental Researches of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged. MS thanks the EU for a Marie Curie fellowship (IIF-253254).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5261).

References

Brandenburg, K. (2009). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2009). *APEX2*, *SAINT* and *SADABS*. Bruker–Nonius BV, Delft, The Netherlands.

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). *Inorg. Chim. Acta*, 357, 3746–3752.
- Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). *Dalton Trans.* pp. 1428–1437.
- Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). *Inorg. Chem.* 49, 4750–4752.
- Seredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010). *Tetrahedron*, **66**, 8772–8777.
- Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). *Dalton Trans.* pp. 3183–3194.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, m314-m315 [doi:10.1107/S1600536813012178]

[Diaquasesqui(nitrato- κO)hemi(perchlorato- κO)copper(II)]- μ -{bis[5methyl-3-(pyridin-2-yl)-1*H*-pyrazol-4-yl] selenide}-[triaqua(perchlorato- κO)copper(II)] nitrate monohydrate

Maksym Seredyuk, Vadim A. Pavlenko, Kateryna O. Znovjyak, Elzbieta Gumienna-Kontecka and Turganbay S. Iskenderov

S1. Comment

Pyrazole-derived ligands are widely used in molecular magnetism, bioinorganic modelling and supramolecular chemistry due to their bridging nature and possibility for easy functionalization. As a part of our synthetic and structural study of pyrazolylselenides (Seredyuk *et al.*, 2010), and their complexes with *d*-metals (Seredyuk *et al.*, 2007), we report here the molecular and crystal structures of the title compound (Fig. 1).

The title compound, $[Cu_2(H_2O)_5(NO_3)_{1.5}(CIO_4)_{1.5}(C_{18}H_{16}N_6Se)]^+$.NO₃⁻.H₂O, is a binuclear complex formed by bis(3-methyl-5-(pyridin-2-yl)-1*H*-pyrazol-4-yl)selenide (Seredyuk *et al.*, 2010), where both Cu^{II} ions are surrounded by fuor O and two N donor atoms which form coordination polyhedra best described as axially elongated octahedra. In both, the equatorial planes are formed by the chelating pyrazole-pyridine fragment of the organic ligand [Cu—N 1.942 (3)–2.023 (3) Å] and two water molecules [Cu—O 1.948 (3)–1.972 (3) Å], whereas the axial positions are occupied by the water molecule [Cu—O 2.419 (3) Å] and the monodentately coordinated perchlorate anion [Cu1—O 2.489 (3) Å] or the perchlorate/nitrate anion [Cu2—O 2.643 (11)/2.688 (11) Å] and the nitrate anion [Cu2—O 2.445 (3) Å]. The organic selenide is trans-oriented with the angle C—Se—C equal to 96.01 (14)°. The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky *et al.*, 2004; Kanderal *et al.*, 2005; Moroz *et al.*, 2010).

An additional nitrate anion balancing the charge of the complex molecule serves a bridge being involved in intermolecular hydrogen bonds between the NH group of a pyrazole moiety $[N \cdots O = 2.829 (4) \text{ Å}]$ and the water molecule coordinated to the Cu1 ion $[O \cdots O = 2.737 (3) \text{ Å}]$. The second NH group of the ligand molecule is bonded with the water molecule $[N \cdots O = 2.762 (3) \text{ Å}]$. Also, numerous intermolecular hydrogen bonds are observed between water molecules and perchlorate and nitrate anions with $O \cdots O$ distances in the range of 2.660 (3)–3.022 (5) Å. The distances centroid-centroid between the closest coplanar pyridine fragments of the neighboring molecules are equal to 3.834 (4) and 4.010 (4) Å (Fig. 2).

S2. Experimental

In a solution of Cu(NO₃)₂.6H₂O (0.144 g, 0.468 mmol) and NaClO₄ (0.122 g, 1 mmol) in 5 ml of water a batch of bis(3-methyl-5-(pyridin-2-yl)-1*H*-pyrazol-4-yl)selenide.MeOH (0.1 g, 0.234 mmol) (Seredyuk *et al.*, 2010) was dissolved. After several weeks well formed green crystals were formed and isolated. Analysis, calculated for $C_{18}H_{28}Cl_{1.5}Cu_2N_{8.5}O_{19.5}Se$: C 23.13, H 3.02, N 12.74%; found: C 23.17, H 3.04, N 12.01%.

S3. Refinement

The NH and water H atoms were located in a difference Fourier map. The positions of water H atoms were refined with distance restraint of O—H = 0.84 (2) Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$, but H atoms of the NH groups were constrained to ride on their parent atom, with N—H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$. The C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93(CH), 0.96(CH₃), and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$ for CH and CH₃, respectively. It was found that one of the coordinated perchlorate ions occupy almost the same location with the nitrate ion, both ions were modelled as disordered over two positions with site occupancies of 0.5. For the disordered perchlorate/nitrate anion, each set of four/three oxygen atoms was restrained to have the same anisotropic displacement parameters.

Figure 1

The asymmetric unit of the title compound, showing the labeling scheme and 90% probability displacement ellipsoids. Hydrogen bonds are indicated by dashed lines. H atoms are omitted for clarity.

Figure 2

Projection of a fragment of the crystal packing along the *a* axis showing π - π stacking intractions between the pyridine groups (dashed lines).

$[Diaquasesqui(nitrato-\kappa O)hemi(perchlorato-\kappa O)copper(II)]-\mu-\{bis[5-methyl-3-(pyridin-2-yl)-1H-pyrazol-4-yl] selenide}-[triaqua(perchlorato-\kappa O)copper(II)] nitrate monohydrate$

direct methods

Crystal data	
$[Cu_2(ClO_4)_{1.5}(NO_3)_{1.5}(C_{18}H_{16}N_6Se)]$	$V = 1608.93 (16) \text{ Å}^3$
$(H_2O)_5]NO_3 \cdot H_2O$	Z = 2
$M_r = 934.72$	F(000) = 938
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.929 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.7233 (6) Å	Cell parameters from 6705 reflections
b = 13.1987 (7) Å	$\theta = 2.6 - 30.3^{\circ}$
c = 13.3217 (8) Å	μ = 2.67 mm ⁻¹
$\alpha = 93.510 \ (4)^{\circ}$	T = 100 K
$\beta = 108.858 \ (5)^{\circ}$	Block, green
$\gamma = 93.494 \ (4)^{\circ}$	$0.30 \times 0.25 \times 0.12 \text{ mm}$
Data collection	
Bruker SMART APEXII CCD	11167 measured reflections
diffractometer	7085 independent reflections
Radiation source: fine-focus sealed tube	5817 reflections with $I > 2\sigma(I)$
Flat graphite crystal monochromator	$R_{\rm int} = 0.073$
Detector resolution: 16 pixels mm ⁻¹	$\theta_{\rm max} = 28.4^\circ, \ \theta_{\rm min} = 3.5^\circ$
φ and ω scans	$h = -10 \rightarrow 12$
Absorption correction: multi-scan	$k = -17 \rightarrow 17$
(SADABS; Bruker, 2009)	$l = -17 \rightarrow 16$
$T_{\min} = 0.468, \ T_{\max} = 0.728$	
Refinement	
Refinement on F^2	7085 reflections
Least-squares matrix: full	498 parameters
$R[F^2 > 2\sigma(F^2)] = 0.041$	12 restraints
$wR(F^2) = 0.113$	Primary atom site location: structure-invariant

S = 1.02

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0615P)^2]$
map	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 1.00 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.95 \text{ e} \text{ Å}^{-3}$
and constrained refinement	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Se	0.30579 (4)	0.28810 (2)	0.04893 (3)	0.01672 (10)	
Cu1	0.07983 (4)	0.55346 (3)	0.31262 (3)	0.01379 (10)	
Cu2	0.60531 (4)	-0.03338 (3)	0.28618 (3)	0.01818 (11)	
Cl1	0.08419 (9)	0.80696 (6)	0.22351 (8)	0.02334 (19)	
O1	0.2168 (3)	0.63956 (19)	0.4340 (2)	0.0209 (5)	
H2O1	0.284 (4)	0.669 (3)	0.419 (4)	0.031*	
H1O1	0.173 (4)	0.680 (3)	0.457 (3)	0.031*	
O2	-0.0895 (2)	0.57907 (18)	0.35723 (19)	0.0166 (5)	
H1O2	-0.137 (4)	0.626 (2)	0.329 (3)	0.025*	
H2O2	-0.079 (4)	0.577 (3)	0.4215 (17)	0.025*	
O1W	0.2383 (3)	0.01642 (19)	0.4205 (2)	0.0228 (5)	
H1W1	0.181 (4)	0.059 (3)	0.428 (4)	0.034*	
H2W1	0.216 (5)	-0.0443 (17)	0.397 (4)	0.034*	
O3	0.1043 (3)	0.42346 (18)	0.4361 (2)	0.0192 (5)	
H1O3	0.189 (3)	0.406 (3)	0.457 (3)	0.029*	
H2O3	0.056 (4)	0.370 (2)	0.410 (3)	0.029*	
O4	0.5283 (3)	-0.06721 (19)	0.4011 (2)	0.0214 (5)	
H1O4	0.505 (5)	-0.1278 (17)	0.405 (4)	0.032*	
H2O4	0.596 (4)	-0.049 (3)	0.458 (2)	0.032*	
O5	0.7923 (3)	-0.08153 (19)	0.3647 (2)	0.0245 (6)	
H1O5	0.802 (5)	-0.139 (2)	0.341 (4)	0.037*	
H2O5	0.865 (3)	-0.045 (3)	0.362 (4)	0.037*	
O6	0.0385 (3)	0.8548 (2)	0.3056 (3)	0.0499 (10)	
O7	0.0311 (3)	0.8566 (2)	0.1280 (3)	0.0410 (8)	
O8	0.2401 (3)	0.8125 (2)	0.2577 (2)	0.0368 (7)	
O9	0.0257 (3)	0.70178 (18)	0.2037 (2)	0.0287 (6)	
O10	0.4717 (3)	0.72896 (18)	0.4218 (2)	0.0255 (6)	
O11	0.5918 (3)	0.59929 (17)	0.4819 (2)	0.0218 (5)	
O12	0.6898 (3)	0.75338 (19)	0.5375 (2)	0.0299 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

O13	0.7312 (3)	-0.2750 (2)	0.2985 (3)	0.0379 (7)
014	0.5604 (3)	-0.36909 (19)	0.1776 (2)	0.0290 (6)
015	0.5431 (3)	-0.20641 (19)	0.1993 (2)	0.0249 (5)
N1	0.2334 (3)	0.4991 (2)	0.2624 (2)	0.0149 (5)
N2	0.3773(3)	0.4906(2)	0.3050(2)	0.0159(5)
H1N2	0.4325	0 5242	0.3628	0.019*
N3	-0.0450(3)	0.3212 0.47889 (19)	0.1744(2)	0.019
N4	0.0120(3)	0.0459(2)	0.1749(2)	0.0169 (6)
N5	0.3236(3)	0.0437(2)	0.2247(2)	0.0109(0)
LIN5	0.3230 (3)	0.0087 (2)	0.2505 (2)	0.0179(0) 0.021*
NG	0.2930	0.0381	0.2938 0.1646 (2)	0.021°
INU N7	0.0000(3)	0.0214(2)	0.1040(2)	0.0191(0)
IN /	0.3839(3)	0.0932(2)	0.4812(2)	0.0188(0)
N8	0.6108 (3)	-0.2844(2)	0.2239(2)	0.0188 (6)
	0.5770(3)	0.3955 (3)	0.2785 (3)	0.0219 (7)
HIA	0.6415	0.4534	0.3163	0.033*
HIB	0.6008	0.3744	0.2163	0.033*
H1C	0.5877	0.3407	0.3239	0.033*
C2	0.4246 (4)	0.4232 (2)	0.2463 (3)	0.0161 (6)
C3	0.3034 (3)	0.3858 (2)	0.1598 (3)	0.0143 (6)
C4	0.1865 (3)	0.4339 (2)	0.1747 (3)	0.0140 (6)
C5	0.0275 (3)	0.4270 (2)	0.1190 (3)	0.0140 (6)
C6	-0.0450 (4)	0.3737 (2)	0.0211 (3)	0.0171 (6)
H6	0.0063	0.3376	-0.0152	0.021*
C7	-0.1951 (4)	0.3752 (2)	-0.0219 (3)	0.0187 (7)
H7	-0.2458	0.3391	-0.0869	0.022*
C8	-0.2691 (4)	0.4306 (3)	0.0323 (3)	0.0188 (7)
H8	-0.3695	0.4336	0.0038	0.023*
С9	-0.1901 (3)	0.4817 (2)	0.1305 (3)	0.0177 (7)
Н9	-0.2395	0.5192	0.1672	0.021*
C10	0.1243 (4)	0.1828 (3)	0.2098(3)	0.0210(7)
H10A	0.0756	0.1312	0.2370	0.031*
H10B	0.0607	0.1990	0.1420	0.031*
H10C	0 1498	0 2428	0.2586	0.031*
C11	0.2582(3)	0.12420	0.1969 (3)	0.0170 (6)
C12	0.2502(3) 0.3424(3)	0.1449(2) 0.1760(2)	0.1345(3)	0.0170(0)
C12	0.3424(3) 0.4547(4)	0.1700(2) 0.1103(2)	0.1543(3)	0.0151(0)
C14	0.+5+7 (+) 0.5762 (3)	0.1105(2) 0.0038(2)	0.1343(3) 0.1147(3)	0.0161(0)
C14 C15	0.5702(3)	0.0938(2) 0.1410(2)	0.1147(3)	0.0109(0)
U15	0.0019 (4)	0.1410(2)	0.0314 (3)	0.0100(7)
HIS CIC	0.5442	0.1914	-0.0008	0.022^{*}
	0.7149 (4)	0.1119 (3)	-0.0031 (3)	0.0205 (7)
HI6	0./333	0.1419	-0.0594	0.025*
	0.8007 (4)	0.0369 (3)	0.0477 (3)	0.0228 (7)
HI7	0.8768	0.0159	0.0257	0.027*
C18	0.7700 (4)	-0.0058 (3)	0.1317 (3)	0.0219 (7)
H18	0.8278	-0.0550	0.1662	0.026*
Cl2	0.8810 (3)	0.1792 (2)	0.3891 (2)	0.0147 (5)
O16	0.9609 (11)	0.0934 (7)	0.3751 (9)	0.0270 (7)
O17	0.8847 (5)	0.2502 (4)	0.3146 (5)	0.0270 (7)

0.50 0.50 0.50

supporting information

O18	0.9531 (6)	0.2249 (4)	0.4990 (5)	0.0270 (7)	0.50
019	0.7361 (11)	0.1453 (8)	0.3799 (7)	0.0270 (7)	0.50
N9	0.8701 (15)	0.1712 (11)	0.4062 (11)	0.0188 (6)	0.50
O20	0.9164 (6)	0.2618 (4)	0.4398 (6)	0.0363 (11)	0.50
O21	0.7413 (12)	0.1391 (8)	0.4031 (8)	0.0363 (11)	0.50
O22	0.9545 (12)	0.1050 (7)	0.3892 (10)	0.0363 (11)	0.50

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Se	0.02294 (18)	0.01469 (16)	0.01541 (17)	0.00675 (12)	0.00905 (13)	0.00297 (12)
Cu1	0.01339 (19)	0.01215 (19)	0.0161 (2)	0.00040 (14)	0.00579 (15)	-0.00181 (15)
Cu2	0.0180 (2)	0.0160 (2)	0.0223 (2)	0.00449 (15)	0.00766 (17)	0.00644 (17)
Cl1	0.0206 (4)	0.0162 (4)	0.0349 (5)	0.0012 (3)	0.0124 (4)	-0.0028 (3)
01	0.0184 (12)	0.0196 (12)	0.0252 (13)	-0.0029 (10)	0.0102 (10)	-0.0060 (10)
O2	0.0161 (11)	0.0188 (11)	0.0161 (12)	0.0067 (9)	0.0059 (9)	0.0029 (10)
O1W	0.0244 (13)	0.0199 (12)	0.0251 (14)	-0.0013 (10)	0.0110 (11)	-0.0021 (11)
O3	0.0206 (12)	0.0156 (11)	0.0223 (13)	0.0012 (9)	0.0080 (10)	0.0033 (10)
O4	0.0241 (13)	0.0173 (12)	0.0221 (13)	-0.0002 (10)	0.0065 (10)	0.0041 (10)
O5	0.0217 (13)	0.0182 (12)	0.0334 (15)	0.0038 (10)	0.0080 (11)	0.0050 (11)
O6	0.0407 (18)	0.0424 (18)	0.072 (2)	-0.0143 (14)	0.0361 (17)	-0.0361 (18)
O7	0.0314 (16)	0.0275 (14)	0.064 (2)	0.0057 (12)	0.0119 (15)	0.0213 (15)
08	0.0202 (14)	0.0473 (18)	0.0435 (18)	0.0056 (12)	0.0102 (12)	0.0067 (14)
09	0.0479 (17)	0.0127 (12)	0.0239 (14)	-0.0045 (11)	0.0119 (12)	-0.0032 (10)
O10	0.0159 (12)	0.0209 (12)	0.0356 (16)	0.0022 (10)	0.0013 (11)	0.0113 (11)
011	0.0239 (13)	0.0132 (11)	0.0247 (13)	0.0002 (9)	0.0030 (10)	0.0025 (10)
O12	0.0255 (14)	0.0192 (12)	0.0347 (16)	-0.0033 (10)	-0.0023 (11)	-0.0044 (11)
O13	0.0268 (15)	0.0255 (14)	0.0448 (18)	0.0119 (12)	-0.0116 (13)	-0.0029 (13)
O14	0.0273 (14)	0.0223 (13)	0.0324 (15)	0.0000 (11)	0.0039 (11)	-0.0017 (12)
O15	0.0233 (13)	0.0240 (13)	0.0262 (14)	0.0090 (10)	0.0041 (10)	0.0082 (11)
N1	0.0136 (13)	0.0120 (12)	0.0200 (14)	-0.0001 (10)	0.0065 (11)	0.0019 (11)
N2	0.0143 (13)	0.0152 (13)	0.0174 (14)	0.0002 (10)	0.0049 (11)	-0.0002 (11)
N3	0.0151 (13)	0.0113 (12)	0.0180 (14)	-0.0006 (10)	0.0076 (11)	-0.0014 (11)
N4	0.0208 (14)	0.0136 (13)	0.0194 (15)	0.0049 (11)	0.0094 (11)	0.0055 (11)
N5	0.0164 (13)	0.0190 (14)	0.0212 (15)	0.0012 (11)	0.0092 (11)	0.0067 (12)
N6	0.0207 (14)	0.0165 (13)	0.0205 (15)	0.0020 (11)	0.0071 (12)	0.0027 (12)
N7	0.0177 (14)	0.0167 (13)	0.0227 (15)	0.0008 (11)	0.0073 (12)	0.0036 (12)
N8	0.0166 (13)	0.0199 (14)	0.0211 (15)	0.0055 (11)	0.0067 (11)	0.0057 (11)
C1	0.0149 (16)	0.0207 (16)	0.031 (2)	0.0023 (13)	0.0085 (14)	0.0022 (15)
C2	0.0193 (16)	0.0127 (14)	0.0189 (16)	0.0009 (12)	0.0094 (13)	0.0047 (13)
C3	0.0168 (15)	0.0129 (14)	0.0156 (15)	0.0032 (12)	0.0082 (12)	0.0011 (12)
C4	0.0180 (15)	0.0105 (14)	0.0139 (15)	-0.0005 (12)	0.0060 (12)	0.0021 (12)
C5	0.0149 (15)	0.0123 (14)	0.0158 (16)	0.0012 (11)	0.0059 (12)	0.0028 (12)
C6	0.0209 (16)	0.0139 (15)	0.0168 (16)	0.0014 (12)	0.0072 (13)	-0.0030 (13)
C7	0.0225 (17)	0.0141 (15)	0.0161 (16)	-0.0009 (13)	0.0022 (13)	0.0007 (13)
C8	0.0157 (15)	0.0194 (16)	0.0186 (17)	-0.0006 (13)	0.0025 (13)	0.0011 (13)
C9	0.0171 (16)	0.0185 (16)	0.0174 (17)	-0.0007 (13)	0.0064 (13)	0.0002 (13)
C10	0.0188 (16)	0.0198 (16)	0.0272 (19)	0.0021 (13)	0.0106 (14)	0.0051 (14)

C11	0.0155 (15)	0.0162 (15)	0.0179 (16)	-0.0015 (12)	0.0043 (13)	-0.0007 (13)
C12	0.0180 (15)	0.0111 (14)	0.0146 (16)	-0.0002 (12)	0.0035 (12)	0.0009 (12)
C13	0.0201 (16)	0.0120 (14)	0.0161 (16)	0.0001 (12)	0.0057 (13)	0.0018 (12)
C14	0.0172 (15)	0.0104 (14)	0.0215 (17)	0.0004 (12)	0.0048 (13)	-0.0021 (13)
C15	0.0203 (16)	0.0126 (14)	0.0209 (17)	-0.0006 (12)	0.0069 (13)	0.0000 (13)
C16	0.0266 (18)	0.0179 (16)	0.0193 (17)	0.0003 (13)	0.0111 (14)	0.0015 (14)
C17	0.0197 (17)	0.0241 (18)	0.0263 (19)	0.0003 (14)	0.0115 (14)	-0.0037 (15)
C18	0.0218 (17)	0.0196 (16)	0.0250 (19)	0.0065 (14)	0.0079 (14)	0.0023 (14)
Cl2	0.0151 (9)	0.0085 (8)	0.0224 (13)	-0.0033 (6)	0.0107 (7)	-0.0058 (8)
016	0.0208 (15)	0.0273 (16)	0.0354 (19)	0.0073 (12)	0.0117 (13)	0.0038 (14)
O17	0.0208 (15)	0.0273 (16)	0.0354 (19)	0.0073 (12)	0.0117 (13)	0.0038 (14)
O18	0.0208 (15)	0.0273 (16)	0.0354 (19)	0.0073 (12)	0.0117 (13)	0.0038 (14)
O19	0.0208 (15)	0.0273 (16)	0.0354 (19)	0.0073 (12)	0.0117 (13)	0.0038 (14)
N9	0.0166 (13)	0.0199 (14)	0.0211 (15)	0.0055 (11)	0.0067 (11)	0.0057 (11)
O20	0.034 (2)	0.0206 (19)	0.061 (3)	-0.0118 (16)	0.030 (2)	-0.0110 (19)
O21	0.034 (2)	0.0206 (19)	0.061 (3)	-0.0118 (16)	0.030 (2)	-0.0110 (19)
O22	0.034 (2)	0.0206 (19)	0.061 (3)	-0.0118 (16)	0.030 (2)	-0.0110 (19)

Geometric parameters (Å, °)

Se—C12	1.904 (3)	N4—N5	1.340 (4)	
Se—C3	1.907 (3)	N5—C11	1.341 (4)	
Cu1—O2	1.963 (2)	N5—H1N5	0.8600	
Cu1—O1	1.969 (3)	N6—C18	1.334 (4)	
Cu1—N1	1.978 (3)	N6—C14	1.360 (4)	
Cu1—N3	2.005 (3)	C1—C2	1.479 (4)	
Cu1—O3	2.419 (3)	C1—H1A	0.9600	
Cu1—O9	2.489 (3)	C1—H1B	0.9600	
Cu2—N4	1.942 (3)	C1—H1C	0.9600	
Cu2—O5	1.948 (3)	C2—C3	1.394 (5)	
Cu2—O4	1.972 (3)	C3—C4	1.398 (4)	
Cu2—N6	2.023 (3)	C4—C5	1.477 (4)	
Cu2—O15	2.445 (3)	C5—C6	1.388 (4)	
Cu2—O19	2.643 (11)	C6—C7	1.387 (5)	
Cl1—07	1.426 (3)	С6—Н6	0.9300	
Cl1—O8	1.431 (3)	C7—C8	1.382 (5)	
Cl106	1.434 (3)	С7—Н7	0.9300	
Cl1—O9	1.443 (3)	C8—C9	1.391 (5)	
01—H2O1	0.826 (19)	C8—H8	0.9300	
01—H101	0.805 (19)	С9—Н9	0.9300	
O2—H1O2	0.834 (19)	C10—C11	1.479 (4)	
O2—H2O2	0.831 (19)	C10—H10A	0.9600	
O1W—H1W1	0.836 (19)	C10—H10B	0.9600	
O1W—H2W1	0.832 (19)	C10—H10C	0.9600	
O3—H1O3	0.831 (19)	C11—C12	1.403 (5)	
O3—H2O3	0.818 (19)	C12—C13	1.404 (5)	
O4—H1O4	0.829 (19)	C13—C14	1.464 (5)	
O4—H2O4	0.836 (19)	C14—C15	1.388 (5)	

O5—H1O5	0.823 (19)	C15—C16	1.386 (5)
O5—H2O5	0.842 (19)	С15—Н15	0.9300
O10—N7	1.262 (4)	C16—C17	1.397 (5)
O11—N7	1.271 (3)	C16—H16	0.9300
O12—N7	1.232 (4)	C17—C18	1.389 (5)
013—N8	1.260 (4)	С17—Н17	0.9300
014—N8	1.234 (4)	C18—H18	0.9300
015—N8	1.259 (4)	Cl2—017	1.413 (6)
N1—C4	1.209(1) 1.340(4)	C12 - 0.19	1415(11)
N1—N2	1.344(4)	C12 - 016	1 447 (8)
N2-C2	1 346 (4)	C12 - 018	1.117(0) 1.475(7)
N2H1N2	0.8600	N9_020	1.475(1)
N3 C0	1.346(4)	N9 021	1.235(13) 1.285(17)
N3 C5	1.340(4) 1.357(4)	N9-021	1.283(17) 1.203(15)
N4 C12	1.337(4)	N9-022	1.295 (15)
N4—C13	1.557 (4)		
C12—Se—C3	96.01 (14)	O10—N7—O11	118.5 (3)
02-Cu1-01	93.43 (10)	014-N8-015	121.3(3)
02—Cu1—N1	168.52 (10)	014-N8-013	120.1(3)
01— $Cu1$ — $N1$	94 85 (11)	015-N8-013	1186(3)
Ω^2 — $Cu1$ —N3	92 57 (11)	$C_2 - C_1 - H_1 A$	109.5
01— $Cu1$ — $N3$	170.62 (11)	C_2 C_1 H_1B	109.5
N1_Cu1_N3	80.28 (11)	H_1A C_1 H_1B	109.5
$\Omega^2 = \Omega^1 = \Omega^3$	81.67 (0)	$C_2 C_1 H_1 C_2$	109.5
02 - Cu1 - 03	85.52 (10)	$H_{1A} = C_1 - H_{1C}$	109.5
N1 Cu1 O2	03.32(10)		109.5
N1 = Cu1 = O3	91.00(10) 102 50(10)	HIB-CI-HIC	109.3
$N_{3} = Cu_{1} = 0_{3}$	102.30(10)	$N_2 = C_2 = C_3$	100.0(3)
02 - Cu1 - 09	88.12 (10)	$N_2 = C_2 = C_1$	122.8 (3)
01—Cu1—09	91.62 (10)	$C_3 = C_2 = C_1$	130.5 (3)
NI—CuI—O9	99.57 (11)	C2—C3—C4	105.2 (3)
N3—Cu1—O9	81.37 (10)	C2—C3—Se	125.1 (2)
03—Cu1—09	169.20 (9)	C4—C3—Se	129.7 (2)
N4—Cu2—O5	166.31 (12)	N1—C4—C3	110.2 (3)
N4—Cu2—O4	90.67 (11)	N1—C4—C5	114.8 (3)
O5—Cu2—O4	90.21 (11)	C3—C4—C5	135.0 (3)
N4—Cu2—N6	79.71 (12)	N3—C5—C6	121.7 (3)
O5—Cu2—N6	98.40 (12)	N3—C5—C4	112.7 (3)
O4—Cu2—N6	169.88 (11)	C6—C5—C4	125.6 (3)
N4—Cu2—O15	107.91 (11)	C7—C6—C5	119.0 (3)
O5—Cu2—O15	85.70 (10)	С7—С6—Н6	120.5
O4—Cu2—O15	92.59 (10)	С5—С6—Н6	120.5
N6—Cu2—O15	93.36 (11)	C8—C7—C6	119.7 (3)
N4—Cu2—O19	83.5 (2)	С8—С7—Н7	120.2
O5—Cu2—O19	82.9 (2)	С6—С7—Н7	120.2
O4—Cu2—O19	95.1 (2)	С7—С8—С9	118.5 (3)
N6—Cu2—O19	80.7 (2)	С7—С8—Н8	120.7
O15—Cu2—O19	166.2 (2)	С9—С8—Н8	120.7
O7—Cl1—O8	109.63 (18)	N3—C9—C8	122.4 (3)

O7—Cl1—O6	110.2 (2)	N3—C9—H9	118.8
O8—Cl1—O6	109.33 (19)	С8—С9—Н9	118.8
O7—Cl1—O9	109.16 (18)	C11—C10—H10A	109.5
O8—Cl1—O9	109.82 (18)	C11-C10-H10B	109.5
O6—C11—O9	108.64 (17)	H10A—C10—H10B	109.5
Cu1—O1—H2O1	113 (3)	C11—C10—H10C	109.5
Cu1—O1—H1O1	110 (3)	H10A—C10—H10C	109.5
H2O1—O1—H1O1	110 (4)	H10B—C10—H10C	109.5
Cu1—O2—H1O2	115 (3)	N5—C11—C12	106.6 (3)
Cu1—O2—H2O2	117 (3)	N5-C11-C10	122.1 (3)
H1O2—O2—H2O2	114 (4)	C12—C11—C10	131.3 (3)
H1W1—O1W—H2W1	127 (4)	C11—C12—C13	104.9 (3)
Cu1—O3—H1O3	111 (3)	C11—C12—Se	124.4 (2)
Cu1—O3—H2O3	114 (3)	C13—C12—Se	130.6 (3)
H1O3—O3—H2O3	103 (4)	N4—C13—C12	109.7 (3)
Cu2—O4—H1O4	118 (3)	N4—C13—C14	114.3 (3)
Cu2—O4—H2O4	105 (3)	C12—C13—C14	136.0 (3)
H104-04-H204	106 (4)	N6-C14-C15	121.8 (3)
Cu2—O5—H1O5	112 (3)	N6-C14-C13	112.7 (3)
Cu2O5H2O5	114 (3)	C15-C14-C13	125.3 (3)
H105-05-H205	105 (4)	C16—C15—C14	119.0 (3)
Cl1—O9—Cu1	132.23 (16)	C16—C15—H15	120.5
N8—015—Cu2	128.4 (2)	C14—C15—H15	120.5
C4-N1-N2	106.2 (3)	C_{15} C_{16} C_{17}	119.1 (3)
C4—N1—Cu1	115.8 (2)	C15—C16—H16	120.4
N2—N1—Cu1	135.9 (2)	С17—С16—Н16	120.4
N1—N2—C2	111.8 (3)	C18—C17—C16	118.7 (3)
N1—N2—H1N2	124.1	С18—С17—Н17	120.7
C2—N2—H1N2	124.1	С16—С17—Н17	120.7
C9—N3—C5	118.7 (3)	N6—C18—C17	122.4 (3)
C9—N3—Cu1	125.6 (2)	N6—C18—H18	118.8
C5—N3—Cu1	115.6 (2)	C17—C18—H18	118.8
C13—N4—N5	106.9 (3)	O17—Cl2—O19	111.6 (4)
C13—N4—Cu2	116.9 (2)	O17—Cl2—O16	109.9 (5)
N5—N4—Cu2	134.7 (2)	O19—Cl2—O16	110.3 (6)
N4—N5—C11	111.7 (3)	O17—Cl2—O18	110.8 (4)
N4—N5—H1N5	124.1	O19—Cl2—O18	107.5 (5)
C11—N5—H1N5	124.1	O16—Cl2—O18	106.6 (5)
C18—N6—C14	119.0 (3)	Cl2—O19—Cu2	123.9 (6)
C18—N6—Cu2	126.5 (2)	O20—N9—O21	119.1 (12)
C14—N6—Cu2	114.5 (2)	O20—N9—O22	122.0 (12)
O12—N7—O10	121.2 (3)	O21—N9—O22	118.2 (12)
O12—N7—O11	120.3 (3)		
	· · ·		
O7-Cl1-O9-Cu1	171.1 (2)	C12—Se—C3—C4	-109.6 (3)
O8—Cl1—O9—Cu1	50.8 (3)	N2—N1—C4—C3	-1.9 (3)
O6-Cl1-O9-Cu1	-68.7 (3)	Cu1—N1—C4—C3	-168.2 (2)
O2—Cu1—O9—Cl1	97.4 (2)	N2—N1—C4—C5	176.5 (2)

O1—Cu1—O9—Cl1	4.0 (2)	Cu1—N1—C4—C5	10.2 (3)
N1—Cu1—O9—Cl1	-91.2 (2)	C2-C3-C4-N1	2.1 (4)
N3—Cu1—O9—Cl1	-169.7 (2)	Se-C3-C4-N1	-178.8 (2)
O3—Cu1—O9—Cl1	78.5 (5)	C2—C3—C4—C5	-175.9 (3)
N4—Cu2—O15—N8	-170.6 (3)	Se—C3—C4—C5	3.2 (6)
O5—Cu2—O15—N8	10.9 (3)	C9—N3—C5—C6	-2.7(5)
O4—Cu2—O15—N8	-79.1 (3)	Cu1—N3—C5—C6	-178.7(2)
N6—Cu2—O15—N8	109.1 (3)	C9—N3—C5—C4	177.7 (3)
019—Cu2—015—N8	45.0 (8)	Cu1—N3—C5—C4	1.7 (3)
O2— $Cu1$ — $N1$ — $C4$	44.8 (7)	N1—C4—C5—N3	-7.7(4)
01— $Cu1$ — $N1$ — $C4$	-179.2(2)	$C_{3}-C_{4}-C_{5}-N_{3}$	170.2 (3)
N3—Cu1—N1—C4	-7.3(2)	N1—C4—C5—C6	172.7 (3)
03-Cu1-N1-C4	95 2 (2)	C_{3} C_{4} C_{5} C_{6}	-94(6)
09—Cu1—N1—C4	-867(2)	N_{3} C_{5} C_{6} C_{7}	11(5)
Ω^2 — $Cu1$ — $N1$ — $N2$	-1161(5)	C4-C5-C6-C7	-1793(3)
O1 - Cu1 - N1 - N2	200(3)	$C_{5}^{}C_{6}^{}C_{7}^{}C_{8}^{}$	10(5)
$N_{1} = Cu_{1} = N_{1} = N_{2}$	-1681(3)	C_{5} C_{6} C_{7} C_{8} C_{9}	-1.5(5)
$O_3 C_{11} N_1 N_2$	-65.6(3)	$C_{0} = C_{1} = C_{0} = C_{1}$	1.5(5)
O_{3} C_{u1} N_{1} N_{2}	112 A (3)	C_{3} C_{3	2.2(3)
$C_4 = N_1 = N_2$	112.4(3)	$C_{11} = N_{3} = C_{3} = C_{3}$	-0.1(5)
C_4 N_1 N_2 C_2	1.0(3) 162 1 (2)	$C_{1} = C_{0} = C_{2} = M_{3}$	-0.1(3)
$Cu_1 = N_1 = N_2 = C_2$	103.1(2)	N4 = N5 = C11 = C12	-2.0(4)
$V_2 = Cu_1 = N_3 = C_9$	10.1(3)	N4 - N5 - C11 - C10	1/0.0(3)
NI = CuI = N3 = C9	-1/2.9(3)	N_{3} $-C_{11}$ $-C_{12}$ $-C_{13}$	1.9 (4)
03 - Cu1 - N3 - C9	98.2(3)	C10-C11-C12-C13	-1/9.0(3)
09— $Cu1$ — $N3$ — $C9$	-/1.0(3)	N_{2}	-1/5.9(2)
02—Cul—N3—C5	-168.2(2)	C10— $C11$ — $C12$ —Se	3.2 (5)
NI-Cul-N3-C5	2.8 (2)	C3—Se—C12—C11	53.5 (3)
03-Cul-N3-C5	-86.1(2)	C3—Se—C12—C13	-123.7(3)
09—Cul—N3—C5	104.1 (2)	N5-N4-C13-C12	0.1 (4)
05—Cu2—N4—C13	70.2 (6)	Cu2—N4—C13—C12	-167.9 (2)
04—Cu2—N4—C13	163.9 (3)	N5—N4—C13—C14	-178.1(3)
N6—Cu2—N4—C13	-13.0 (2)	Cu2—N4—C13—C14	14.0 (4)
O15—Cu2—N4—C13	-103.2 (2)	C11—C12—C13—N4	-1.2 (4)
O19—Cu2—N4—C13	68.8 (3)	Se—C12—C13—N4	176.4 (2)
O5—Cu2—N4—N5	-93.4 (6)	C11—C12—C13—C14	176.4 (4)
O4—Cu2—N4—N5	0.2 (3)	Se—C12—C13—C14	-6.0 (6)
N6—Cu2—N4—N5	-176.6 (3)	C18—N6—C14—C15	-0.7(5)
O15—Cu2—N4—N5	93.1 (3)	Cu2—N6—C14—C15	178.4 (2)
O19—Cu2—N4—N5	-94.9 (4)	C18—N6—C14—C13	175.9 (3)
C13—N4—N5—C11	1.2 (4)	Cu2—N6—C14—C13	-5.0 (4)
Cu2—N4—N5—C11	166.0 (2)	N4—C13—C14—N6	-5.4 (4)
N4—Cu2—N6—C18	-171.4 (3)	C12-C13-C14-N6	177.1 (4)
O5—Cu2—N6—C18	22.3 (3)	N4—C13—C14—C15	171.1 (3)
O4—Cu2—N6—C18	170.3 (5)	C12—C13—C14—C15	-6.5 (6)
O15—Cu2—N6—C18	-63.8 (3)	N6-C14-C15-C16	1.3 (5)
O19—Cu2—N6—C18	103.6 (4)	C13—C14—C15—C16	-174.9 (3)
N4—Cu2—N6—C14	9.6 (2)	C14—C15—C16—C17	-0.8 (5)
O5—Cu2—N6—C14	-156.7 (2)	C15—C16—C17—C18	-0.3 (5)

O4—Cu2—N6—C14	-8.8 (8)	C14—N6—C18—C17	-0.4 (5)
O15—Cu2—N6—C14	117.2 (2)	Cu2—N6—C18—C17	-179.4 (3)
O19—Cu2—N6—C14	-75.4 (3)	C16—C17—C18—N6	0.9 (5)
Cu2-015-N8-014	174.3 (2)	O17—Cl2—O19—Cu2	102.8 (5)
Cu2—O15—N8—O13	-4.6 (5)	O16-Cl2-O19-Cu2	-19.7 (8)
N1—N2—C2—C3	0.2 (4)	O18—Cl2—O19—Cu2	-135.5 (4)
N1—N2—C2—C1	-176.7 (3)	N4—Cu2—O19—Cl2	-136.8 (5)
N2-C2-C3-C4	-1.4 (3)	O5—Cu2—O19—Cl2	43.5 (5)
C1—C2—C3—C4	175.2 (3)	O4—Cu2—O19—Cl2	133.1 (5)
N2—C2—C3—Se	179.5 (2)	N6—Cu2—O19—Cl2	-56.3 (5)
C1—C2—C3—Se	-3.9 (5)	O15—Cu2—O19—Cl2	9.3 (12)
C12—Se—C3—C2	69.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H2 <i>O</i> 1…O10	0.83 (2)	1.93 (2)	2.737 (3)	164 (4)
O1—H1 <i>O</i> 1…O18 ⁱ	0.81 (2)	2.00 (2)	2.801 (6)	174 (5)
O1—H1 <i>O</i> 1···O20 ⁱ	0.81 (2)	1.99 (3)	2.747 (6)	155 (4)
O2—H1 <i>O</i> 2···O13 ⁱⁱ	0.83 (2)	1.85 (2)	2.660 (3)	163 (4)
O2—H2 <i>O</i> 2···O3 ⁱⁱⁱ	0.83 (2)	1.99 (2)	2.805 (4)	167 (4)
O3—H1 <i>O</i> 3···O11 ⁱ	0.83 (2)	2.03 (2)	2.842 (4)	166 (4)
O3—H1 <i>O</i> 3···O12 ⁱ	0.83 (2)	2.47 (3)	3.130 (4)	137 (4)
O4—H1 <i>O</i> 4…O10 ^{iv}	0.83 (2)	1.94 (2)	2.762 (3)	174 (4)
O4—H2 <i>O</i> 4…O1 <i>W</i> ^v	0.84 (2)	1.88 (2)	2.717 (4)	174 (5)
O5—H1 <i>O</i> 5…O13	0.82 (2)	1.87 (3)	2.617 (4)	150 (4)
O5—H2 <i>O</i> 5…O16	0.84 (2)	1.97 (3)	2.719 (11)	148 (4)
O5—H2 <i>O</i> 5…O16	0.84 (2)	1.97 (3)	2.719 (11)	148 (4)
O5—H2 <i>O</i> 5····O22	0.84 (2)	2.07 (3)	2.784 (10)	142 (4)
$O1W$ — $H2W1$ ··· $O6^{iv}$	0.83 (2)	2.10 (3)	2.800 (4)	142 (4)
O1 <i>W</i> —H1 <i>W</i> 1···O16 ^{vi}	0.84 (2)	2.12 (3)	2.833 (9)	144 (4)
O1 <i>W</i> —H1 <i>W</i> 1···O22 ^{vi}	0.84 (2)	2.23 (3)	2.977 (11)	149 (4)
N2—H1 <i>N</i> 2···O11	0.86	1.98	2.829 (4)	168
N5—H1 <i>N</i> 5…O1 <i>W</i>	0.86	1.94	2.762 (4)	160

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*+1, *z*; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*, *y*-1, *z*; (v) -*x*+1, -*y*, -*z*+1; (vi) *x*-1, *y*, *z*.