organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 2-[4-(dimethylamino)phenyl]-1phenyl-1*H*-benzimidazole-5-carboxylate

Keng Yoon Yeong,^a Mohamed Ashraf Ali,^a Tan Soo Choon,^a Mohd Mustaqim Rosli^b and Ibrahim Abdul Razak^b*‡

^aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: arazaki@usm.my

Received 26 April 2013; accepted 7 May 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.050; wR factor = 0.125; data-to-parameter ratio = 21.8.

In the title compound, $C_{24}H_{23}N_3O_2$, the benzimidazole ring system makes dihedral angles of 7.28 (5) and 67.17 (5)°, respectively, with the planes of the benzene and phenyl rings, which in turn make a dihedral angle of 69.77 (6)°. In the crystal, molecules are connected by C-H···N and C-H···O interactions, forming a layer parallel to the *bc* plane. A π - π interaction, with a centroid–centroid distance of 3.656 (1) Å, is observed in the layer.

Related literature

For applications of benzimidazole compounds, see: Rao *et al.* (2002); Thakurdesai *et al.* (2007); McKellar & Scott (1990). For a related structure, see: Yoon *et al.* (2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

$C_{24}H_{23}N_3O_2$ $M_r = 385.45$	Triclinic, $P\overline{1}$ a = 8.7196 (1) Å

‡ Thomson Reuters ResearcherID: A-5599-2009.

Acta	Cryst.	(2013).	E 69 ,	0886

Z = 2
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 100 K
$0.36 \times 0.25 \times 0.25 \text{ mm}$

Data collection

b = 10.4133 (2) Å c = 11.3658 (2) Å

 $\alpha = 79.312 (1)^{\circ}$

 $\beta = 74.393(1)^{\circ}$

 $\gamma = 89.781 \ (1)^{\circ}$

V = 975.56 (3) Å³

21016 measured reflections
5777 independent reflections
4602 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.029$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	265 parameters
$wR(F^2) = 0.125$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
5777 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C15-H15A\cdots N2^{i}$	0.95	2.57	3.4868 (16)	164
$C18-H18A\cdots O2^{ii}$	0.95	2.50	3.2217 (17)	133
$C19-H19A\cdots O2^{iii}$	0.95	2.38	3.3209 (16)	170

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x, y, z + 1; (iii) -x + 2, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors would like to express their gratitude to Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Molecular Medicine and Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia. This work was funded through Research Grant No. RUC (1001/PSK/8620012) and HiCoE Research Grant No (311/CIPPM/4401005). IAR also thanks USM for the Short Term Grant, No. 304/PFIZIK/6312078.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5269).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- McKellar, Q. A. & Scott, E. W. (1990). J. Vet. Pharmacol. Ther. 13, 223–247. Rao, A., Chimirri, A., Clercq, E. D., Monforte, A. M., Monforte, P.,
- Pannecouque, C. & Zappala, M. (2002). Il Farmaco, 57, 819-823.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). *Pharmacology Online*, 1, 314–329.
- Yoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012). Acta Cryst. E68, 059.

supporting information

Acta Cryst. (2013). E69, o886 [doi:10.1107/S1600536813012440]

Ethyl 2-[4-(dimethylamino)phenyl]-1-phenyl-1H-benzimidazole-5-carboxylate

Keng Yoon Yeong, Mohamed Ashraf Ali, Tan Soo Choon, Mohd Mustaqim Rosli and Ibrahim Abdul Razak

S1. Comment

The synthesis of benzimidazole derivatives is an active area of research in medicinal chemistry. Benzimidazoles are a class of bioactive heterocyclic compounds which exhibit a wide range of activities such as anti-HIV (Rao *et al.*, 2002), anti-inflammatory (Thakurdesai *et al.*, 2007) and anthelmintics (McKellar & Scott, 1990). As part of our ongoing structural studies on benzimidazole derivatives (Yoon *et al.*, 2012), we now report the structure of the title compound.

In the title compound (Fig. 1), the benzimidazole ring (N1/N2/C1-C7) is planar with a maximum deviation of 0.025 (1) Å for atom N1. It makes dihedral angles of 7.28 (5) and 67.17 (5)°, respectively, with the benzene (C8–C13) and phenyl (C14–C19) rings, and these two rings make a dihedral angle of 69.77 (6)° with each other.

In the crystal (Fig. 2), the molecules are connected by intermolecular C15—H15A···N2ⁱ, C18—H18A···O2ⁱⁱ and C19—H19A···O2ⁱⁱⁱ interactions (Table 1) to form two-dimensional layers parallel to the *bc*-plane. A π - π interaction between the benzene rings of C1–C6 and C8–C13 also contributes in stabilizing the crystal structure with their centroid distances of 3.656 (1) Å (2 - *x*, 1 - *y*, 1 - *z*).

S2. Experimental

Ethyl 3-amino-4-(penylamino)benzoate (0.84 mmol) and sodium metabisulfite adduct of 4-dimethylamino benzaldehyde (1.68 mmol) were dissolved in DMF. The reaction mixture was reflux at 130 °C for 2 hrs. After completion, the reaction mixture was diluted in Ethyl acetate (20 ml) and washed with water (20 ml). The organic layer was collected, dried over Na_2SO_4 and the evaporated *in vacuo* to yield the product. The product was recrystallized from Ethyl acetate.

S3. Refinement

All the H atoms were positioned geometrically and refined using a riding model with with C—H = 0.95–0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms. A rotating group model was applied to the methyl group.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2

A crystal packing view of the title compound. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted for clarity.

Ethyl 2-[4-(dimethylamino)phenyl]-1-phenyl-1H-benzimidazole-5-carboxylate

Z = 2

F(000) = 408

 $\theta = 2.5 - 30.2^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, yellow

 $0.36 \times 0.25 \times 0.25$ mm

21016 measured reflections 5777 independent reflections 4602 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 30.2^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

T = 100 K

 $R_{\rm int} = 0.029$

 $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 16$

 $D_{\rm x} = 1.312 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7512 reflections

Crystal data

 $\begin{array}{l} C_{24}H_{23}N_{3}O_{2}\\ M_{r}=385.45\\ \text{Triclinic, $P1$}\\ \text{Hall symbol: -P 1}\\ a=8.7196\ (1)\ \text{\AA}\\ b=10.4133\ (2)\ \text{\AA}\\ c=11.3658\ (2)\ \text{\AA}\\ a=79.312\ (1)^{\circ}\\ \beta=74.393\ (1)^{\circ}\\ \gamma=89.781\ (1)^{\circ}\\ V=975.56\ (3)\ \text{\AA}^{3} \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.970, \ T_{\max} = 0.980$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.125$ S = 1.03	neighbouring sites H-atom parameters constrained
5777 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0552P)^2 + 0.401P]$
265 parameters	where $P = (F_0^2 + 2F_c^2)/3$
U restraints	$(\Delta/\sigma)_{\text{max}} = 0.001$
direct methods	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	1.34962 (11)	-0.05308 (9)	0.29082 (8)	0.02242 (19)
O2	1.18718 (12)	0.04740 (9)	0.18312 (9)	0.0266 (2)

N1	0.98249 (12)	0.30045 (9)	0.65882 (9)	0.0171 (2)
N2	0.88283 (12)	0.33970 (10)	0.49238 (9)	0.0181 (2)
N3	0.41760 (14)	0.72466 (11)	0.79245 (11)	0.0251 (2)
C1	1.05977 (14)	0.22039 (11)	0.57924 (11)	0.0166 (2)
C2	1.17590 (15)	0.12968 (11)	0.58860 (11)	0.0191 (2)
H2A	1.2151	0.1116	0.6600	0.023*
C3	1.23128 (15)	0.06738 (11)	0.48914 (11)	0.0189(2)
H3A	1 3098	0.0043	0 4923	0.023*
C4	1 17363 (14)	0.09557(11)	0.38285(11)	0.0171(2)
C5	1.05674 (14)	0.18556 (11)	0.37516 (11)	0.0171(2) 0.0173(2)
H5A	1 0180	0 2040	0 3036	0.021*
C6	0.99820(14)	0.24776 (11)	0.3030 0.47532(11)	0.021
C7	0.99020(11) 0.87548(14)	0.37009 (11)	0.17552(11) 0.60175(11)	0.0107(2)
C8	0.76152(14)	0.46126 (11)	0.65582(11)	0.0171(2) 0.0178(2)
C9	0.70192(11) 0.67109(15)	0.52985(12)	0.58132(12)	0.0170(2)
НОЛ	0.6880	0.5167	0.4984	0.0203 (2)
C10	0.55857(15)	0.61573 (12)	0.4264 0.62502 (12)	0.025
H10A	0.55057 (15)	0.6602	0.02302 (12)	0.0210 (2)
	0.5000	0.0002 0.63840 (11)	0.3718 0.74735(12)	0.020
C12	0.52322(14)	0.03840(11) 0.56812(12)	0.74733(12) 0.82302(12)	0.0192(2)
U12	0.01739(14)	0.50812 (12)	0.82302 (12)	0.0197(2) 0.024*
C12	0.3338	0.3801 0.48187 (12)	0.9004 0.77812 (11)	0.024
U13	0.72996 (14)	0.40107 (12)	0.77812(11)	0.0193(2)
ПІЗА	0.7870	0.4550	0.8517	0.025°
C14	1.020/5(14) 1.10245(14)	0.31301(11) 0.42822(12)	0.70901(11) 0.77405(12)	0.0109(2)
	1.10243 (14)	0.42822 (12)	0.77493 (12)	0.0199 (2)
HIJA CI(1.1247	0.4994	0.7062	0.024^{*}
	1.14503 (15)	0.43744 (13)	0.88256 (12)	0.0234 (3)
HI6A	1.1955	0.3160	0.8879	0.028*
C1/	1.11435 (16)	0.33248 (14)	0.98248 (12)	0.0251 (3)
HI/A	1.1432	0.3398	1.0559	0.030*
	1.04162 (15)	0.21/08 (13)	0.97494 (12)	0.0234 (3)
HI8A	1.0224	0.1450	1.0427	0.028*
C19	0.996/3 (15)	0.20678 (12)	0.86827(11)	0.0195 (2)
HI9A	0.9462	0.1282	0.8630	0.023*
C20	1.23411 (14)	0.02962 (11)	0.27581 (11)	0.0186 (2)
C21	1.40780 (16)	-0.12580 (13)	0.19169 (12)	0.0237 (3)
H2IA	1.4474	-0.0649	0.1109	0.028*
H21B	1.3210	-0.1834	0.1862	0.028*
C22	1.53955 (19)	-0.20550 (18)	0.22155 (17)	0.0406 (4)
H22A	1.5714	-0.2651	0.1628	0.061*
H22B	1.5030	-0.2564	0.3065	0.061*
H22C	1.6309	-0.1474	0.2150	0.061*
C23	0.34150 (17)	0.80634 (14)	0.70882 (14)	0.0289 (3)
H23A	0.2964	0.7515	0.6638	0.043*
H23B	0.4205	0.8701	0.6492	0.043*
H23C	0.2562	0.8526	0.7569	0.043*
C24	0.41620 (17)	0.76536 (13)	0.90791 (13)	0.0260 (3)
H24A	0.3841	0.6904	0.9770	0.039*

supporting information

H24B	0.3404	0.8344	0.9219	0.039*
H24C	0.5231	0.7988	0.9029	0.039*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0267 (5)	0.0233 (4)	0.0198 (4)	0.0066 (4)	-0.0075 (4)	-0.0088 (3)
O2	0.0379 (5)	0.0266 (5)	0.0194 (5)	0.0062 (4)	-0.0131 (4)	-0.0072 (4)
N1	0.0224 (5)	0.0161 (5)	0.0155 (5)	0.0039 (4)	-0.0093 (4)	-0.0038 (4)
N2	0.0211 (5)	0.0175 (5)	0.0164 (5)	0.0018 (4)	-0.0070 (4)	-0.0023 (4)
N3	0.0284 (6)	0.0242 (5)	0.0256 (6)	0.0092 (4)	-0.0107 (5)	-0.0074 (4)
C1	0.0210 (5)	0.0147 (5)	0.0148 (5)	0.0002 (4)	-0.0062 (4)	-0.0031 (4)
C2	0.0247 (6)	0.0177 (5)	0.0174 (5)	0.0034 (4)	-0.0105 (5)	-0.0028 (4)
C3	0.0237 (6)	0.0164 (5)	0.0183 (6)	0.0035 (4)	-0.0085 (5)	-0.0033 (4)
C4	0.0214 (5)	0.0144 (5)	0.0156 (5)	-0.0008 (4)	-0.0056 (4)	-0.0022 (4)
C5	0.0216 (5)	0.0173 (5)	0.0143 (5)	-0.0005 (4)	-0.0076 (4)	-0.0019 (4)
C6	0.0194 (5)	0.0146 (5)	0.0166 (5)	-0.0001 (4)	-0.0073 (4)	-0.0011 (4)
C7	0.0200 (5)	0.0145 (5)	0.0169 (5)	0.0005 (4)	-0.0072 (4)	-0.0001 (4)
C8	0.0197 (5)	0.0159 (5)	0.0179 (5)	0.0007 (4)	-0.0067 (4)	-0.0012 (4)
C9	0.0240 (6)	0.0217 (6)	0.0173 (6)	0.0036 (5)	-0.0087 (5)	-0.0034 (4)
C10	0.0232 (6)	0.0214 (6)	0.0219 (6)	0.0045 (5)	-0.0102 (5)	-0.0020 (5)
C11	0.0190 (5)	0.0167 (5)	0.0218 (6)	0.0010 (4)	-0.0060 (5)	-0.0026 (4)
C12	0.0215 (6)	0.0199 (6)	0.0180 (6)	0.0018 (4)	-0.0064 (4)	-0.0028 (4)
C13	0.0217 (6)	0.0190 (5)	0.0174 (5)	0.0021 (4)	-0.0072 (4)	-0.0013 (4)
C14	0.0195 (5)	0.0194 (5)	0.0141 (5)	0.0046 (4)	-0.0074 (4)	-0.0049 (4)
C15	0.0213 (6)	0.0193 (6)	0.0195 (6)	0.0023 (4)	-0.0053 (4)	-0.0050 (4)
C16	0.0223 (6)	0.0270 (6)	0.0240 (6)	0.0006 (5)	-0.0076 (5)	-0.0108 (5)
C17	0.0244 (6)	0.0356 (7)	0.0193 (6)	0.0040 (5)	-0.0101 (5)	-0.0095 (5)
C18	0.0254 (6)	0.0286 (6)	0.0166 (6)	0.0041 (5)	-0.0086 (5)	-0.0010 (5)
C19	0.0220 (6)	0.0187 (5)	0.0191 (6)	0.0020 (4)	-0.0084 (5)	-0.0026 (4)
C20	0.0224 (6)	0.0154 (5)	0.0178 (6)	-0.0008 (4)	-0.0053 (4)	-0.0029 (4)
C21	0.0261 (6)	0.0239 (6)	0.0218 (6)	0.0023 (5)	-0.0035 (5)	-0.0107 (5)
C22	0.0298 (7)	0.0525 (10)	0.0517 (10)	0.0160 (7)	-0.0183 (7)	-0.0301 (8)
C23	0.0271 (7)	0.0285 (7)	0.0343 (7)	0.0102 (5)	-0.0137 (6)	-0.0062 (6)
C24	0.0272 (6)	0.0243 (6)	0.0260 (7)	0.0052 (5)	-0.0054 (5)	-0.0065 (5)

Geometric parameters (Å, °)

01—C20	1.3478 (14)	C11—C12	1.4099 (16)
O1—C21	1.4513 (15)	C12—C13	1.3862 (17)
O2—C20	1.2127 (15)	C12—H12A	0.9500
N1-C1	1.3837 (15)	C13—H13A	0.9500
N1—C7	1.4011 (14)	C14—C15	1.3904 (17)
N1-C14	1.4404 (14)	C14—C19	1.3907 (16)
N2—C7	1.3238 (15)	C15—C16	1.3897 (17)
N2C6	1.3866 (15)	C15—H15A	0.9500
N3—C11	1.3829 (16)	C16—C17	1.3908 (19)
N3—C24	1.4489 (17)	C16—H16A	0.9500

N3—C23	1.4500 (17)	C17—C18	1.3882 (19)
C1—C2	1.3937 (16)	C17—H17A	0.9500
C1—C6	1.4070 (16)	C18—C19	1.3923 (17)
C2—C3	1.3813 (17)	C18—H18A	0.9500
C2—H2A	0.9500	С19—Н19А	0.9500
C3—C4	1.4115 (16)	C21—C22	1.491 (2)
С3—НЗА	0.9500	C21—H21A	0.9900
C4—C5	1.3909 (16)	C21—H21B	0.9900
C4—C20	1.4805 (17)	C22—H22A	0.9800
C5—C6	1.3908 (17)	C22—H22B	0.9800
C5—H5A	0.9500	C22—H22C	0.9800
C7—C8	1.4653 (16)	С23—Н23А	0.9800
C8—C13	1.3995 (17)	С23—Н23В	0.9800
C8—C9	1.4069 (16)	С23—Н23С	0.9800
C9—C10	1.3802 (17)	C24—H24A	0.9800
С9—Н9А	0.9500	C24—H24B	0.9800
C10—C11	1.4087 (18)	C24—H24C	0.9800
C10—H10A	0.9500		
C20—O1—C21	115.44 (10)	C8—C13—H13A	119.2
C1—N1—C7	106.59 (9)	C15—C14—C19	121.28 (11)
C1—N1—C14	122.51 (9)	C15—C14—N1	120.01 (10)
C7—N1—C14	130.52 (10)	C19—C14—N1	118.68 (11)
C7—N2—C6	105.79 (10)	C16—C15—C14	118.87 (11)
C11—N3—C24	119.19 (11)	C16—C15—H15A	120.6
C11—N3—C23	119.82 (11)	C14—C15—H15A	120.6
C24—N3—C23	117.76 (11)	C15—C16—C17	120.50 (12)
N1—C1—C2	131.70 (11)	C15—C16—H16A	119.8
N1—C1—C6	105.58 (10)	C17—C16—H16A	119.8
C2—C1—C6	122.72 (11)	C18—C17—C16	120.03 (12)
C3—C2—C1	116.81 (11)	C18—C17—H17A	120.0
C3—C2—H2A	121.6	С16—С17—Н17А	120.0
C1—C2—H2A	121.6	C17—C18—C19	120.16 (12)
C2—C3—C4	121.33 (11)	C17—C18—H18A	119.9
С2—С3—НЗА	119.3	C19—C18—H18A	119.9
С4—С3—НЗА	119.3	C14—C19—C18	119.14 (12)
C5—C4—C3	121.25 (11)	C14—C19—H19A	120.4
C5—C4—C20	117.45 (10)	C18—C19—H19A	120.4
C3—C4—C20	121.30 (11)	O2—C20—O1	122.55 (11)
C6—C5—C4	118.08 (10)	O2—C20—C4	124.51 (11)
С6—С5—Н5А	121.0	O1—C20—C4	112.95 (10)
С4—С5—Н5А	121.0	O1—C21—C22	107.42 (11)
N2—C6—C5	130.04 (11)	O1—C21—H21A	110.2
N2—C6—C1	110.18 (10)	C22—C21—H21A	110.2
C5—C6—C1	119.77 (11)	O1—C21—H21B	110.2
N2—C7—N1	111.84 (10)	C22—C21—H21B	110.2
N2—C7—C8	122.37 (10)	H21A—C21—H21B	108.5
N1—C7—C8	125.72 (11)	C21—C22—H22A	109.5

C13—C8—C9	116.88 (11)	C21—C22—H22B	109.5
C13—C8—C7	125.18 (11)	H22A—C22—H22B	109.5
C9—C8—C7	117.88 (11)	C21—C22—H22C	109.5
C10—C9—C8	122.03 (12)	H22A—C22—H22C	109.5
С10—С9—Н9А	119.0	H22B—C22—H22C	109.5
С8—С9—Н9А	119.0	N3—C23—H23A	109.5
C9—C10—C11	121.03 (11)	N3—C23—H23B	109.5
C9—C10—H10A	119.5	H23A—C23—H23B	109.5
C11—C10—H10A	119.5	N3—C23—H23C	109.5
N3-C11-C10	121.81 (11)	$H_{23}A - C_{23} - H_{23}C$	109.5
N3-C11-C12	121.07 (11)	H23B—C23—H23C	109.5
C10-C11-C12	117 11 (11)	N3-C24-H24A	109.5
C_{13} C_{12} C_{11}	121.30(11)	N3-C24-H24B	109.5
C13 - C12 - H12A	119.4	H24A - C24 - H24B	109.5
C_{11} C_{12} H_{12A}	119.1	N3-C24-H24C	109.5
C_{12} C_{13} C_{8}	121.63 (11)	$H_{24} = C_{24} = H_{24}C$	109.5
$C_{12} = C_{13} = C_{03}$	110.2	$H_24R = C_24 = H_24C$	109.5
C12—C13—III3A	117.2	1124D—C24—1124C	109.5
C7 N1 C1 C2	-170 10 (12)	C8 C9 C10 C11	-0.05(10)
$C_1 = N_1 = C_1 = C_2$	7 2 (2)	$C_{24} = N_{2}^{2} = C_{10}^{11} = C_{10}^{10}$	-166.84(12)
C7 N1 C1 C6	(1.2)	$C_{24} = N_{3} = C_{11} = C_{10}$	-7.50(10)
$C_{14} N_{1} C_{1} C_{6}$	1.30(12) -172.24(10)	$C_{23} = N_3 = C_{11} = C_{10}$	-7.39(19)
C14 $C1$ $C2$ $C2$	-172.24(10)	$C_{24} = N_{3} = C_{11} = C_{12}$	13.04(10) 172.00(12)
NI = CI = C2 = C3	-1/8.49(12)	C_{23} N3 $-C_{11}$ C_{12}	173.09 (12)
$C_{0} - C_{1} - C_{2} - C_{3}$	0.86 (18)	C9 - C10 - C11 - N3	1/9.62 (12)
C1 - C2 - C3 - C4	0.58 (18)	C9—C10—C11—C12	-1.04 (18)
$C_2 - C_3 - C_4 - C_5$	-1.15 (18)	N3-C11-C12-C13	-179.78 (12)
C2—C3—C4—C20	179.44 (11)	C10-C11-C12-C13	0.87 (18)
C3—C4—C5—C6	0.24 (17)	C11—C12—C13—C8	0.40 (19)
C20—C4—C5—C6	179.67 (10)	C9—C8—C13—C12	-1.47 (18)
C7—N2—C6—C5	-178.08 (12)	C7—C8—C13—C12	-178.60 (11)
C7—N2—C6—C1	1.17 (13)	C1—N1—C14—C15	108.78 (13)
C4—C5—C6—N2	-179.65 (11)	C7—N1—C14—C15	-63.17 (17)
C4—C5—C6—C1	1.16 (17)	C1—N1—C14—C19	-69.23 (15)
N1—C1—C6—N2	-1.61 (13)	C7—N1—C14—C19	118.82 (13)
C2—C1—C6—N2	178.89 (11)	C19—C14—C15—C16	-1.54 (18)
N1—C1—C6—C5	177.73 (10)	N1-C14-C15-C16	-179.49 (11)
C2—C1—C6—C5	-1.76 (18)	C14—C15—C16—C17	0.87 (19)
C6—N2—C7—N1	-0.27 (13)	C15—C16—C17—C18	0.43 (19)
C6—N2—C7—C8	-177.42 (10)	C16—C17—C18—C19	-1.10 (19)
C1—N1—C7—N2	-0.73 (13)	C15—C14—C19—C18	0.88 (18)
C14—N1—C7—N2	172.19 (11)	N1-C14-C19-C18	178.86 (11)
C1—N1—C7—C8	176.31 (11)	C17—C18—C19—C14	0.45 (19)
C14—N1—C7—C8	-10.77 (19)	C21—O1—C20—O2	-3.58 (17)
N2—C7—C8—C13	169.33 (11)	C21—O1—C20—C4	176.91 (10)
N1-C7-C8-C13	-7.41 (19)	C5—C4—C20—O2	-1.07 (18)
N2—C7—C8—C9	-7.78 (17)	C3—C4—C20—O2	178.36 (12)
N1—C7—C8—C9	175.48 (11)	C5-C4-C20-O1	178.43 (10)
C13—C8—C9—C10	1.30 (18)	C3—C4—C20—O1	-2.14 (16)

supporting information

<u>C7—C8—C9—C10</u>	178.65 (11)	C20—O1—C21—C22		177.00 (12)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
C15—H15A····N2 ⁱ	0.95	2.57	3.4868 (16)	164
C18—H18A····O2 ⁱⁱ	0.95	2.50	3.2217 (17)	133
С19—Н19А…О2 ^{ііі}	0.95	2.38	3.3209 (16)	170

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) *x*, *y*, *z*+1; (iii) -*x*+2, -*y*, -*z*+1.