supplementary materials


is5269 scheme

Acta Cryst. (2013). E69, o886    [ doi:10.1107/S1600536813012440 ]

Ethyl 2-[4-(dimethylamino)phenyl]-1-phenyl-1H-benzimidazole-5-carboxylate

K. Y. Yeong, M. A. Ali, T. S. Choon, M. M. Rosli and I. A. Razak

Abstract top

In the title compound, C24H23N3O2, the benzimidazole ring system makes dihedral angles of 7.28 (5) and 67.17 (5)°, respectively, with the planes of the benzene and phenyl rings, which in turn make a dihedral angle of 69.77 (6)°. In the crystal, molecules are connected by C-H...N and C-H...O interactions, forming a layer parallel to the bc plane. A [pi]-[pi] interaction, with a centroid-centroid distance of 3.656 (1) Å, is observed in the layer.

Comment top

The synthesis of benzimidazole derivatives is an active area of research in medicinal chemistry. Benzimidazoles are a class of bioactive heterocyclic compounds which exhibit a wide range of activities such as anti-HIV (Rao et al., 2002), anti-inflammatory (Thakurdesai et al., 2007) and anthelmintics (McKellar & Scott, 1990). As part of our ongoing structural studies on benzimidazole derivatives (Yoon et al., 2012), we now report the structure of the title compound.

In the title compound (Fig. 1), the benzimidazole ring (N1/N2/C1–C7) is planar with a maximum deviation of 0.025 (1) Å for atom N1. It makes dihedral angles of 7.28 (5) and 67.17 (5)°, respectively, with the benzene (C8–C13) and phenyl (C14–C19) rings, and these two rings make a dihedral angle of 69.77 (6)° with each other.

In the crystal (Fig. 2), the molecules are connected by intermolecular C15—H15A···N2i, C18—H18A···O2ii and C19—H19A···O2iii interactions (Table 1) to form two-dimensional layers parallel to the bc-plane. A ππ interaction between the benzene rings of C1–C6 and C8–C13 also contributes in stabilizing the crystal structure with their centroid distances of 3.656 (1) Å (2 - x, 1 - y, 1 - z).

Related literature top

For applications of benzimidazole compounds, see: Rao et al. (2002); Thakurdesai et al. (2007); McKellar & Scott (1990). For a related structure, see: Yoon et al. (2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Ethyl 3-amino-4-(penylamino)benzoate (0.84 mmol) and sodium metabisulfite adduct of 4-dimethylamino benzaldehyde (1.68 mmol) were dissolved in DMF. The reaction mixture was reflux at 130 °C for 2 hrs. After completion, the reaction mixture was diluted in Ethyl acetate (20 ml) and washed with water (20 ml). The organic layer was collected, dried over Na2SO4 and the evaporated in vacuo to yield the product. The product was recrystallized from Ethyl acetate.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A crystal packing view of the title compound. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted for clarity.
Ethyl 2-[4-(dimethylamino)phenyl]-1-phenyl-1H-benzimidazole-5-carboxylate top
Crystal data top
C24H23N3O2Z = 2
Mr = 385.45F(000) = 408
Triclinic, P1Dx = 1.312 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7196 (1) ÅCell parameters from 7512 reflections
b = 10.4133 (2) Åθ = 2.5–30.2°
c = 11.3658 (2) ŵ = 0.09 mm1
α = 79.312 (1)°T = 100 K
β = 74.393 (1)°Block, yellow
γ = 89.781 (1)°0.36 × 0.25 × 0.25 mm
V = 975.56 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5777 independent reflections
Radiation source: fine-focus sealed tube4602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.970, Tmax = 0.980k = 1414
21016 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.401P]
where P = (Fo2 + 2Fc2)/3
5777 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C24H23N3O2γ = 89.781 (1)°
Mr = 385.45V = 975.56 (3) Å3
Triclinic, P1Z = 2
a = 8.7196 (1) ÅMo Kα radiation
b = 10.4133 (2) ŵ = 0.09 mm1
c = 11.3658 (2) ÅT = 100 K
α = 79.312 (1)°0.36 × 0.25 × 0.25 mm
β = 74.393 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5777 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4602 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.029
21016 measured reflectionsθmax = 30.2°
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.125Δρmax = 0.38 e Å3
S = 1.03Δρmin = 0.30 e Å3
5777 reflectionsAbsolute structure: ?
265 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.34962 (11)0.05308 (9)0.29082 (8)0.02242 (19)
O21.18718 (12)0.04740 (9)0.18312 (9)0.0266 (2)
N10.98249 (12)0.30045 (9)0.65882 (9)0.0171 (2)
N20.88283 (12)0.33970 (10)0.49238 (9)0.0181 (2)
N30.41760 (14)0.72466 (11)0.79245 (11)0.0251 (2)
C11.05977 (14)0.22039 (11)0.57924 (11)0.0166 (2)
C21.17590 (15)0.12968 (11)0.58860 (11)0.0191 (2)
H2A1.21510.11160.66000.023*
C31.23128 (15)0.06738 (11)0.48914 (11)0.0189 (2)
H3A1.30980.00430.49230.023*
C41.17363 (14)0.09557 (11)0.38285 (11)0.0171 (2)
C51.05674 (14)0.18556 (11)0.37516 (11)0.0173 (2)
H5A1.01800.20400.30360.021*
C60.99820 (14)0.24776 (11)0.47532 (11)0.0167 (2)
C70.87548 (14)0.37009 (11)0.60175 (11)0.0171 (2)
C80.76152 (14)0.46126 (11)0.65582 (11)0.0178 (2)
C90.67109 (15)0.52985 (12)0.58132 (12)0.0205 (2)
H9A0.68800.51670.49840.025*
C100.55857 (15)0.61573 (12)0.62502 (12)0.0216 (2)
H10A0.50000.66020.57180.026*
C110.52922 (14)0.63840 (11)0.74735 (12)0.0192 (2)
C120.61759 (14)0.56812 (12)0.82302 (12)0.0197 (2)
H12A0.59980.58010.90640.024*
C130.72998 (14)0.48187 (12)0.77812 (11)0.0193 (2)
H13A0.78700.43560.83170.023*
C141.02675 (14)0.31301 (11)0.76961 (11)0.0169 (2)
C151.10245 (14)0.42822 (12)0.77495 (12)0.0199 (2)
H15A1.12470.49940.70620.024*
C161.14503 (15)0.43744 (13)0.88256 (12)0.0234 (3)
H16A1.19550.51600.88790.028*
C171.11435 (16)0.33248 (14)0.98248 (12)0.0251 (3)
H17A1.14320.33981.05590.030*
C181.04162 (15)0.21708 (13)0.97494 (12)0.0234 (3)
H18A1.02240.14501.04270.028*
C190.99673 (15)0.20678 (12)0.86827 (11)0.0195 (2)
H19A0.94620.12820.86300.023*
C201.23411 (14)0.02962 (11)0.27581 (11)0.0186 (2)
C211.40780 (16)0.12580 (13)0.19169 (12)0.0237 (3)
H21A1.44740.06490.11090.028*
H21B1.32100.18340.18620.028*
C221.53955 (19)0.20550 (18)0.22155 (17)0.0406 (4)
H22A1.57140.26510.16280.061*
H22B1.50300.25640.30650.061*
H22C1.63090.14740.21500.061*
C230.34150 (17)0.80634 (14)0.70882 (14)0.0289 (3)
H23A0.29640.75150.66380.043*
H23B0.42050.87010.64920.043*
H23C0.25620.85260.75690.043*
C240.41620 (17)0.76536 (13)0.90791 (13)0.0260 (3)
H24A0.38410.69040.97700.039*
H24B0.34040.83440.92190.039*
H24C0.52310.79880.90290.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0267 (5)0.0233 (4)0.0198 (4)0.0066 (4)0.0075 (4)0.0088 (3)
O20.0379 (5)0.0266 (5)0.0194 (5)0.0062 (4)0.0131 (4)0.0072 (4)
N10.0224 (5)0.0161 (5)0.0155 (5)0.0039 (4)0.0093 (4)0.0038 (4)
N20.0211 (5)0.0175 (5)0.0164 (5)0.0018 (4)0.0070 (4)0.0023 (4)
N30.0284 (6)0.0242 (5)0.0256 (6)0.0092 (4)0.0107 (5)0.0074 (4)
C10.0210 (5)0.0147 (5)0.0148 (5)0.0002 (4)0.0062 (4)0.0031 (4)
C20.0247 (6)0.0177 (5)0.0174 (5)0.0034 (4)0.0105 (5)0.0028 (4)
C30.0237 (6)0.0164 (5)0.0183 (6)0.0035 (4)0.0085 (5)0.0033 (4)
C40.0214 (5)0.0144 (5)0.0156 (5)0.0008 (4)0.0056 (4)0.0022 (4)
C50.0216 (5)0.0173 (5)0.0143 (5)0.0005 (4)0.0076 (4)0.0019 (4)
C60.0194 (5)0.0146 (5)0.0166 (5)0.0001 (4)0.0073 (4)0.0011 (4)
C70.0200 (5)0.0145 (5)0.0169 (5)0.0005 (4)0.0072 (4)0.0001 (4)
C80.0197 (5)0.0159 (5)0.0179 (5)0.0007 (4)0.0067 (4)0.0012 (4)
C90.0240 (6)0.0217 (6)0.0173 (6)0.0036 (5)0.0087 (5)0.0034 (4)
C100.0232 (6)0.0214 (6)0.0219 (6)0.0045 (5)0.0102 (5)0.0020 (5)
C110.0190 (5)0.0167 (5)0.0218 (6)0.0010 (4)0.0060 (5)0.0026 (4)
C120.0215 (6)0.0199 (6)0.0180 (6)0.0018 (4)0.0064 (4)0.0028 (4)
C130.0217 (6)0.0190 (5)0.0174 (5)0.0021 (4)0.0072 (4)0.0013 (4)
C140.0195 (5)0.0194 (5)0.0141 (5)0.0046 (4)0.0074 (4)0.0049 (4)
C150.0213 (6)0.0193 (6)0.0195 (6)0.0023 (4)0.0053 (4)0.0050 (4)
C160.0223 (6)0.0270 (6)0.0240 (6)0.0006 (5)0.0076 (5)0.0108 (5)
C170.0244 (6)0.0356 (7)0.0193 (6)0.0040 (5)0.0101 (5)0.0095 (5)
C180.0254 (6)0.0286 (6)0.0166 (6)0.0041 (5)0.0086 (5)0.0010 (5)
C190.0220 (6)0.0187 (5)0.0191 (6)0.0020 (4)0.0084 (5)0.0026 (4)
C200.0224 (6)0.0154 (5)0.0178 (6)0.0008 (4)0.0053 (4)0.0029 (4)
C210.0261 (6)0.0239 (6)0.0218 (6)0.0023 (5)0.0035 (5)0.0107 (5)
C220.0298 (7)0.0525 (10)0.0517 (10)0.0160 (7)0.0183 (7)0.0301 (8)
C230.0271 (7)0.0285 (7)0.0343 (7)0.0102 (5)0.0137 (6)0.0062 (6)
C240.0272 (6)0.0243 (6)0.0260 (7)0.0052 (5)0.0054 (5)0.0065 (5)
Geometric parameters (Å, º) top
O1—C201.3478 (14)C11—C121.4099 (16)
O1—C211.4513 (15)C12—C131.3862 (17)
O2—C201.2127 (15)C12—H12A0.9500
N1—C11.3837 (15)C13—H13A0.9500
N1—C71.4011 (14)C14—C151.3904 (17)
N1—C141.4404 (14)C14—C191.3907 (16)
N2—C71.3238 (15)C15—C161.3897 (17)
N2—C61.3866 (15)C15—H15A0.9500
N3—C111.3829 (16)C16—C171.3908 (19)
N3—C241.4489 (17)C16—H16A0.9500
N3—C231.4500 (17)C17—C181.3882 (19)
C1—C21.3937 (16)C17—H17A0.9500
C1—C61.4070 (16)C18—C191.3923 (17)
C2—C31.3813 (17)C18—H18A0.9500
C2—H2A0.9500C19—H19A0.9500
C3—C41.4115 (16)C21—C221.491 (2)
C3—H3A0.9500C21—H21A0.9900
C4—C51.3909 (16)C21—H21B0.9900
C4—C201.4805 (17)C22—H22A0.9800
C5—C61.3908 (17)C22—H22B0.9800
C5—H5A0.9500C22—H22C0.9800
C7—C81.4653 (16)C23—H23A0.9800
C8—C131.3995 (17)C23—H23B0.9800
C8—C91.4069 (16)C23—H23C0.9800
C9—C101.3802 (17)C24—H24A0.9800
C9—H9A0.9500C24—H24B0.9800
C10—C111.4087 (18)C24—H24C0.9800
C10—H10A0.9500
C20—O1—C21115.44 (10)C8—C13—H13A119.2
C1—N1—C7106.59 (9)C15—C14—C19121.28 (11)
C1—N1—C14122.51 (9)C15—C14—N1120.01 (10)
C7—N1—C14130.52 (10)C19—C14—N1118.68 (11)
C7—N2—C6105.79 (10)C16—C15—C14118.87 (11)
C11—N3—C24119.19 (11)C16—C15—H15A120.6
C11—N3—C23119.82 (11)C14—C15—H15A120.6
C24—N3—C23117.76 (11)C15—C16—C17120.50 (12)
N1—C1—C2131.70 (11)C15—C16—H16A119.8
N1—C1—C6105.58 (10)C17—C16—H16A119.8
C2—C1—C6122.72 (11)C18—C17—C16120.03 (12)
C3—C2—C1116.81 (11)C18—C17—H17A120.0
C3—C2—H2A121.6C16—C17—H17A120.0
C1—C2—H2A121.6C17—C18—C19120.16 (12)
C2—C3—C4121.33 (11)C17—C18—H18A119.9
C2—C3—H3A119.3C19—C18—H18A119.9
C4—C3—H3A119.3C14—C19—C18119.14 (12)
C5—C4—C3121.25 (11)C14—C19—H19A120.4
C5—C4—C20117.45 (10)C18—C19—H19A120.4
C3—C4—C20121.30 (11)O2—C20—O1122.55 (11)
C6—C5—C4118.08 (10)O2—C20—C4124.51 (11)
C6—C5—H5A121.0O1—C20—C4112.95 (10)
C4—C5—H5A121.0O1—C21—C22107.42 (11)
N2—C6—C5130.04 (11)O1—C21—H21A110.2
N2—C6—C1110.18 (10)C22—C21—H21A110.2
C5—C6—C1119.77 (11)O1—C21—H21B110.2
N2—C7—N1111.84 (10)C22—C21—H21B110.2
N2—C7—C8122.37 (10)H21A—C21—H21B108.5
N1—C7—C8125.72 (11)C21—C22—H22A109.5
C13—C8—C9116.88 (11)C21—C22—H22B109.5
C13—C8—C7125.18 (11)H22A—C22—H22B109.5
C9—C8—C7117.88 (11)C21—C22—H22C109.5
C10—C9—C8122.03 (12)H22A—C22—H22C109.5
C10—C9—H9A119.0H22B—C22—H22C109.5
C8—C9—H9A119.0N3—C23—H23A109.5
C9—C10—C11121.03 (11)N3—C23—H23B109.5
C9—C10—H10A119.5H23A—C23—H23B109.5
C11—C10—H10A119.5N3—C23—H23C109.5
N3—C11—C10121.81 (11)H23A—C23—H23C109.5
N3—C11—C12121.07 (11)H23B—C23—H23C109.5
C10—C11—C12117.11 (11)N3—C24—H24A109.5
C13—C12—C11121.30 (11)N3—C24—H24B109.5
C13—C12—H12A119.4H24A—C24—H24B109.5
C11—C12—H12A119.4N3—C24—H24C109.5
C12—C13—C8121.63 (11)H24A—C24—H24C109.5
C12—C13—H13A119.2H24B—C24—H24C109.5
C7—N1—C1—C2179.19 (12)C8—C9—C10—C110.05 (19)
C14—N1—C1—C27.2 (2)C24—N3—C11—C10166.84 (12)
C7—N1—C1—C61.38 (12)C23—N3—C11—C107.59 (19)
C14—N1—C1—C6172.24 (10)C24—N3—C11—C1213.84 (18)
N1—C1—C2—C3178.49 (12)C23—N3—C11—C12173.09 (12)
C6—C1—C2—C30.86 (18)C9—C10—C11—N3179.62 (12)
C1—C2—C3—C40.58 (18)C9—C10—C11—C121.04 (18)
C2—C3—C4—C51.15 (18)N3—C11—C12—C13179.78 (12)
C2—C3—C4—C20179.44 (11)C10—C11—C12—C130.87 (18)
C3—C4—C5—C60.24 (17)C11—C12—C13—C80.40 (19)
C20—C4—C5—C6179.67 (10)C9—C8—C13—C121.47 (18)
C7—N2—C6—C5178.08 (12)C7—C8—C13—C12178.60 (11)
C7—N2—C6—C11.17 (13)C1—N1—C14—C15108.78 (13)
C4—C5—C6—N2179.65 (11)C7—N1—C14—C1563.17 (17)
C4—C5—C6—C11.16 (17)C1—N1—C14—C1969.23 (15)
N1—C1—C6—N21.61 (13)C7—N1—C14—C19118.82 (13)
C2—C1—C6—N2178.89 (11)C19—C14—C15—C161.54 (18)
N1—C1—C6—C5177.73 (10)N1—C14—C15—C16179.49 (11)
C2—C1—C6—C51.76 (18)C14—C15—C16—C170.87 (19)
C6—N2—C7—N10.27 (13)C15—C16—C17—C180.43 (19)
C6—N2—C7—C8177.42 (10)C16—C17—C18—C191.10 (19)
C1—N1—C7—N20.73 (13)C15—C14—C19—C180.88 (18)
C14—N1—C7—N2172.19 (11)N1—C14—C19—C18178.86 (11)
C1—N1—C7—C8176.31 (11)C17—C18—C19—C140.45 (19)
C14—N1—C7—C810.77 (19)C21—O1—C20—O23.58 (17)
N2—C7—C8—C13169.33 (11)C21—O1—C20—C4176.91 (10)
N1—C7—C8—C137.41 (19)C5—C4—C20—O21.07 (18)
N2—C7—C8—C97.78 (17)C3—C4—C20—O2178.36 (12)
N1—C7—C8—C9175.48 (11)C5—C4—C20—O1178.43 (10)
C13—C8—C9—C101.30 (18)C3—C4—C20—O12.14 (16)
C7—C8—C9—C10178.65 (11)C20—O1—C21—C22177.00 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N2i0.952.573.4868 (16)164
C18—H18A···O2ii0.952.503.2217 (17)133
C19—H19A···O2iii0.952.383.3209 (16)170
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N2i0.952.573.4868 (16)164
C18—H18A···O2ii0.952.503.2217 (17)133
C19—H19A···O2iii0.952.383.3209 (16)170
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1; (iii) x+2, y, z+1.
Acknowledgements top

The authors would like to express their gratitude to Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Molecular Medicine and Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia. This work was funded through Research Grant No. RUC (1001/PSK/8620012) and HiCoE Research Grant No (311/CIPPM/4401005). IAR also thanks USM for the Short Term Grant, No. 304/PFIZIK/6312078.

references
References top

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.

McKellar, Q. A. & Scott, E. W. (1990). J. Vet. Pharmacol. Ther. 13, 223–247.

Rao, A., Chimirri, A., Clercq, E. D., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2002). Il Farmaco, 57, 819–823.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacology Online, 1, 314–329.

Yoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012). Acta Cryst. E68, o59.