supplementary materials


is5270 scheme

Acta Cryst. (2013). E69, o951    [ doi:10.1107/S1600536813013305 ]

Dimethyl 1,8-bis(4-methylphenyl)-11-oxatricyclo[6.2.1.02,7]undeca-2,4,6,9-tetraene-9,10-dicarboxylate

B. Balakrishnan, M. Nandakumar, P. R. Seshadri and A. K. Mohanakrishnan

Abstract top

The title compound, C28H24O5, consists of a fused tricyclic system containing two five-membered rings and one six-membered ring. The five-membered rings both exhibit an envelope conformation with the O atom at the flap, whereas the six-membered ring adopts a boat conformation. The dihedral angle between the 4-methylphenyl rings at the 1,8-positions is 76.4 (1)°. In the crystal, molecules are stacked in columns along the a axis through C-H...O interactions.

Comment top

The Diels-Alder reaction is among the most powerful C—C bond forming process and one of the most widely used and studied transformation in organic chemistry. The isobenzofuran have found extensive use as reactive diene in intra and inter molecular Diels-Alder reactions for the rapid construction of poly cyclic ring (Denmark & Thorarensen, 1996).

The title compound, C28H24O5, comprises a fused tricyclic system and two 4-methylphenyl rings attached to this system (Fig. 1). The tricyclic system consists of two 5-membered rings and one aromatic ring. In addition, two carboxylate units are attached to the tricyclic system. Geometrical parameters agree well with reported structures (Bailey et al., 1995; Takahashi et al., 2003; Balakrishnan et al., 2013). The 5-membered ring C1/C2/C7/C8/O1 adopts an envelope conformation with atom O1 displaced by -0.772 Å from the mean plane of the other ring atoms C1/C2/C7/C8. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2 = 0.530 (1) Å, φ = 143.5 (2)°, ΔS(O1) = 0.004 (1)° and Δ2(O1) = 0.319 (1)°. The second 5-membered ring C1/C23/C26/C8/O1 also adopts an envelope conformation with atom O1 displaced by -0.776 Å from the mean plane of the other ring atoms C1/C23/C26/C8. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2 = 0.556 (1) Å, φ = -33.2 (2)°, ΔS(O1) = 0.022 (1)° and Δ2(O1) = 0.323 (1)°. The six membered ring C1/C2/C7/C8/C26/C23 adopts a boat conformation with puckering parameter q2 = 0.999 (1) Å, θ = 90.4 (1)° and φ = 1.1 (1)°.

The dihedral angle between the mean planes of the rings C1/C2/C7/C8/O1 and C1/C23/C26/C8/O1 is 72.5 (1)°. The mean plane of the tricyclic system makes dihedral angles of 31.4 (1) and 69.9 (1)°, respectively, with the 4-methylphenyl rings. The dihedral angle between the terminal 4-methylphenyl rings is 76.4 (1). The carboxylate ligand at the C26 carbon atom lies practically in the plane of the C26/C8/O1/C1 five ring [C23—C26—C27—O5 torsion angle = -7.1 (2)°], while that at the C23 carbon atom is turned out of this plane [C26—C23—C24—O3 torsion angle = 72.0 (2)°]. Centrosymmetric dimers are formed by C—H···O hydrogen bond.

Related literature top

For background to Diels–Alder reactions, see: Denmark & Thorarensen (1996). For related structures, see: Bailey et al. (1995); Balakrishnan et al. (2013); Takahashi et al. (2003). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

Diels-Alder reaction of 1,3-di-p-tolylbenzo[c]furan (1.0 g, 3.36 mmol) in dry DCM was added DMAD (0.53 g, 3.69 mmol) and the reaction mixture was stirred for 0.5 h at room temperature under nitrogen atmosphere. The solvent was removed and solid was washed with methanol to give compound as colourless solid. Yield: 1.07 g (80%). M.P.: 116 °C. This adduct was crystallized from CHCl3/CH3OH (3:1) by the slow evaporation method.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with (C—H = 0.93–0.96 Å), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
Dimethyl 1,8-bis(4-methylphenyl)-11-oxatricyclo[6.2.1.02,7]undeca-2,4,6,9-tetraene-9,10-dicarboxylate top
Crystal data top
C28H24O5Z = 4
Mr = 440.47F(000) = 928
Monoclinic, P21/cDx = 1.259 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.9018 (4) Åθ = 2.2–30.2°
b = 25.6357 (8) ŵ = 0.09 mm1
c = 11.0961 (4) ÅT = 293 K
β = 113.369 (1)°Black, colourless
V = 2324.46 (15) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6904 independent reflections
Radiation source: fine-focus sealed tube4338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scanθmax = 30.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.975, Tmax = 0.983k = 3634
29434 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.4566P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6904 reflectionsΔρmax = 0.30 e Å3
299 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (14)
Crystal data top
C28H24O5V = 2324.46 (15) Å3
Mr = 440.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9018 (4) ŵ = 0.09 mm1
b = 25.6357 (8) ÅT = 293 K
c = 11.0961 (4) Å0.30 × 0.20 × 0.20 mm
β = 113.369 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6904 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4338 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.034
29434 measured reflectionsθmax = 30.2°
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.170Δρmax = 0.30 e Å3
S = 1.03Δρmin = 0.17 e Å3
6904 reflectionsAbsolute structure: ?
299 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C80.77122 (19)0.06795 (6)0.26149 (15)0.0371 (3)
C70.8610 (2)0.10788 (6)0.36867 (16)0.0398 (3)
C60.9676 (2)0.10415 (7)0.49831 (16)0.0465 (4)
H60.99190.07210.54110.056*
C51.0378 (2)0.15018 (8)0.56286 (18)0.0537 (5)
H51.10990.14880.65060.064*
C41.0032 (2)0.19756 (8)0.5002 (2)0.0549 (5)
H41.05050.22770.54650.066*
C30.8982 (2)0.20119 (7)0.36820 (18)0.0479 (4)
H30.87590.23320.32520.057*
C20.82902 (19)0.15609 (6)0.30388 (16)0.0391 (3)
C10.71914 (19)0.14347 (6)0.15944 (15)0.0380 (3)
C160.60917 (19)0.18477 (6)0.07505 (16)0.0409 (4)
C220.6743 (2)0.22872 (7)0.0416 (2)0.0570 (5)
H220.78730.23290.07370.068*
C210.5732 (3)0.26660 (8)0.0392 (2)0.0621 (5)
H210.61930.29570.06130.075*
C190.4047 (2)0.26197 (8)0.08750 (18)0.0559 (5)
C200.2962 (3)0.30280 (11)0.1783 (2)0.0864 (8)
H20A0.18360.29340.20250.130*
H20C0.31910.30510.25570.130*
H20B0.31690.33600.13450.130*
C180.3410 (2)0.21909 (8)0.0500 (2)0.0580 (5)
H180.22810.21580.07920.070*
C170.4401 (2)0.18069 (7)0.03012 (18)0.0499 (4)
H170.39350.15210.05390.060*
C90.7112 (2)0.01647 (6)0.28848 (16)0.0420 (4)
C100.6997 (2)0.00459 (8)0.40519 (19)0.0574 (5)
H100.73470.02860.47350.069*
C110.6362 (3)0.04307 (10)0.4220 (2)0.0726 (6)
H110.63100.05060.50220.087*
C120.5807 (2)0.07938 (8)0.3224 (2)0.0665 (6)
C130.5158 (3)0.13196 (10)0.3413 (3)0.1046 (11)
H13A0.52000.13430.42890.157*
H13B0.58160.15910.32760.157*
H13C0.40460.13580.27940.157*
C140.5881 (3)0.06670 (8)0.2050 (2)0.0650 (5)
H140.54880.09020.13560.078*
C150.6529 (2)0.01967 (7)0.1876 (2)0.0554 (5)
H150.65740.01220.10710.066*
C260.87077 (18)0.06868 (6)0.17415 (14)0.0363 (3)
C271.0114 (2)0.03366 (6)0.19642 (16)0.0407 (4)
C281.2486 (2)0.02100 (9)0.1527 (2)0.0694 (6)
H28A1.29930.03550.09840.104*
H28B1.22490.01520.13150.104*
H28C1.32140.02430.24340.104*
C230.83616 (18)0.11356 (6)0.10885 (14)0.0359 (3)
C240.91045 (19)0.13555 (6)0.02149 (15)0.0380 (3)
C250.9345 (4)0.12516 (10)0.1798 (2)0.0781 (7)
H25A0.89170.10390.25730.117*
H25B1.05110.12090.13840.117*
H25C0.90910.16110.20330.117*
O10.63095 (13)0.09913 (4)0.17856 (11)0.0401 (3)
O41.0475 (2)0.00215 (6)0.27114 (16)0.0750 (5)
O51.09867 (17)0.04857 (6)0.13005 (15)0.0648 (4)
O20.99992 (17)0.17240 (5)0.04755 (13)0.0595 (4)
O30.86178 (17)0.10946 (5)0.08975 (12)0.0566 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0394 (8)0.0369 (8)0.0392 (8)0.0058 (6)0.0199 (7)0.0033 (6)
C70.0438 (8)0.0403 (8)0.0424 (8)0.0035 (7)0.0246 (7)0.0017 (6)
C60.0512 (10)0.0517 (10)0.0426 (9)0.0039 (8)0.0250 (8)0.0009 (7)
C50.0534 (10)0.0666 (12)0.0443 (9)0.0025 (9)0.0227 (8)0.0100 (9)
C40.0575 (11)0.0533 (11)0.0607 (11)0.0079 (9)0.0307 (9)0.0196 (9)
C30.0523 (10)0.0391 (8)0.0613 (11)0.0028 (7)0.0321 (9)0.0042 (8)
C20.0403 (8)0.0382 (8)0.0464 (8)0.0055 (6)0.0252 (7)0.0011 (6)
C10.0376 (8)0.0360 (8)0.0465 (8)0.0027 (6)0.0230 (7)0.0026 (6)
C160.0398 (8)0.0394 (8)0.0484 (9)0.0075 (6)0.0228 (7)0.0041 (7)
C220.0434 (9)0.0532 (11)0.0804 (13)0.0116 (8)0.0308 (9)0.0201 (10)
C210.0627 (12)0.0557 (11)0.0822 (14)0.0194 (9)0.0438 (11)0.0275 (10)
C190.0558 (11)0.0655 (12)0.0493 (10)0.0225 (9)0.0239 (9)0.0141 (9)
C200.0793 (16)0.1036 (19)0.0741 (15)0.0402 (15)0.0280 (13)0.0407 (14)
C180.0397 (9)0.0655 (12)0.0632 (12)0.0108 (9)0.0146 (9)0.0046 (10)
C170.0450 (9)0.0467 (9)0.0602 (11)0.0031 (7)0.0230 (8)0.0026 (8)
C90.0424 (8)0.0381 (8)0.0486 (9)0.0040 (7)0.0214 (7)0.0058 (7)
C100.0621 (12)0.0612 (11)0.0511 (10)0.0081 (9)0.0248 (9)0.0072 (9)
C110.0665 (13)0.0842 (16)0.0634 (13)0.0132 (12)0.0219 (11)0.0292 (12)
C120.0456 (10)0.0532 (11)0.0907 (16)0.0019 (9)0.0164 (10)0.0258 (11)
C130.0777 (17)0.0762 (16)0.138 (3)0.0227 (14)0.0192 (17)0.0424 (17)
C140.0620 (12)0.0479 (10)0.0832 (15)0.0097 (9)0.0268 (11)0.0047 (10)
C150.0648 (12)0.0475 (10)0.0594 (11)0.0070 (9)0.0306 (10)0.0042 (8)
C260.0387 (8)0.0355 (7)0.0377 (7)0.0030 (6)0.0183 (6)0.0014 (6)
C270.0432 (9)0.0404 (8)0.0387 (8)0.0068 (7)0.0165 (7)0.0037 (7)
C280.0493 (11)0.0777 (14)0.0899 (16)0.0173 (10)0.0368 (11)0.0038 (12)
C230.0345 (7)0.0376 (8)0.0376 (8)0.0012 (6)0.0163 (6)0.0017 (6)
C240.0364 (8)0.0394 (8)0.0402 (8)0.0020 (6)0.0171 (6)0.0003 (6)
C250.1121 (19)0.0845 (15)0.0655 (13)0.0214 (14)0.0648 (14)0.0108 (12)
O10.0375 (6)0.0379 (6)0.0494 (6)0.0030 (4)0.0218 (5)0.0054 (5)
O40.0805 (10)0.0741 (9)0.0850 (10)0.0389 (8)0.0484 (9)0.0360 (8)
O50.0582 (8)0.0647 (8)0.0903 (10)0.0230 (7)0.0495 (8)0.0212 (7)
O20.0621 (8)0.0579 (8)0.0655 (8)0.0220 (7)0.0329 (7)0.0116 (6)
O30.0732 (9)0.0604 (8)0.0466 (7)0.0216 (7)0.0349 (6)0.0126 (6)
Geometric parameters (Å, º) top
C8—O11.4607 (18)C17—H170.9300
C8—C91.498 (2)C9—C101.373 (2)
C8—C71.532 (2)C9—C151.386 (3)
C8—C261.551 (2)C10—C111.390 (3)
C7—C61.377 (2)C10—H100.9300
C7—C21.401 (2)C11—C121.378 (3)
C6—C51.393 (3)C11—H110.9300
C6—H60.9300C12—C141.369 (3)
C5—C41.372 (3)C12—C131.514 (3)
C5—H50.9300C13—H13A0.9600
C4—C31.393 (3)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C3—C21.370 (2)C14—C151.383 (3)
C3—H30.9300C14—H140.9300
C2—C11.545 (2)C15—H150.9300
C1—O11.4441 (18)C26—C231.329 (2)
C1—C161.493 (2)C26—C271.480 (2)
C1—C231.566 (2)C27—O41.192 (2)
C16—C221.384 (2)C27—O51.321 (2)
C16—C171.389 (2)C28—O51.441 (2)
C22—C211.384 (3)C28—H28A0.9600
C22—H220.9300C28—H28B0.9600
C21—C191.383 (3)C28—H28C0.9600
C21—H210.9300C23—C241.484 (2)
C19—C181.375 (3)C24—O21.1948 (19)
C19—C201.507 (3)C24—O31.3170 (19)
C20—H20A0.9600C25—O31.447 (2)
C20—H20C0.9600C25—H25A0.9600
C20—H20B0.9600C25—H25B0.9600
C18—C171.384 (3)C25—H25C0.9600
C18—H180.9300
O1—C8—C9108.93 (12)C16—C17—H17120.0
O1—C8—C7100.11 (11)C10—C9—C15118.01 (16)
C9—C8—C7123.44 (13)C10—C9—C8123.36 (16)
O1—C8—C2699.05 (11)C15—C9—C8118.46 (15)
C9—C8—C26118.25 (12)C9—C10—C11120.5 (2)
C7—C8—C26103.04 (12)C9—C10—H10119.7
C6—C7—C2120.85 (15)C11—C10—H10119.7
C6—C7—C8134.08 (15)C12—C11—C10121.4 (2)
C2—C7—C8104.71 (13)C12—C11—H11119.3
C7—C6—C5117.45 (17)C10—C11—H11119.3
C7—C6—H6121.3C14—C12—C11117.75 (18)
C5—C6—H6121.3C14—C12—C13120.6 (2)
C4—C5—C6121.63 (18)C11—C12—C13121.7 (2)
C4—C5—H5119.2C12—C13—H13A109.5
C6—C5—H5119.2C12—C13—H13B109.5
C5—C4—C3120.92 (17)H13A—C13—H13B109.5
C5—C4—H4119.5C12—C13—H13C109.5
C3—C4—H4119.5H13A—C13—H13C109.5
C2—C3—C4117.82 (17)H13B—C13—H13C109.5
C2—C3—H3121.1C12—C14—C15121.3 (2)
C4—C3—H3121.1C12—C14—H14119.3
C3—C2—C7121.29 (16)C15—C14—H14119.3
C3—C2—C1133.32 (15)C14—C15—C9120.90 (19)
C7—C2—C1105.29 (13)C14—C15—H15119.6
O1—C1—C16113.01 (12)C9—C15—H15119.6
O1—C1—C299.77 (12)C23—C26—C27127.89 (14)
C16—C1—C2119.34 (13)C23—C26—C8106.55 (12)
O1—C1—C2398.34 (11)C27—C26—C8122.93 (13)
C16—C1—C23119.10 (13)O4—C27—O5123.69 (15)
C2—C1—C23103.71 (12)O4—C27—C26124.04 (16)
C22—C16—C17118.35 (16)O5—C27—C26112.14 (14)
C22—C16—C1120.35 (15)O5—C28—H28A109.5
C17—C16—C1121.29 (15)O5—C28—H28B109.5
C16—C22—C21120.69 (18)H28A—C28—H28B109.5
C16—C22—H22119.7O5—C28—H28C109.5
C21—C22—H22119.7H28A—C28—H28C109.5
C19—C21—C22121.19 (18)H28B—C28—H28C109.5
C19—C21—H21119.4C26—C23—C24128.15 (14)
C22—C21—H21119.4C26—C23—C1105.77 (12)
C18—C19—C21117.71 (17)C24—C23—C1125.47 (13)
C18—C19—C20121.7 (2)O2—C24—O3124.63 (15)
C21—C19—C20120.6 (2)O2—C24—C23124.68 (14)
C19—C20—H20A109.5O3—C24—C23110.67 (13)
C19—C20—H20C109.5O3—C25—H25A109.5
H20A—C20—H20C109.5O3—C25—H25B109.5
C19—C20—H20B109.5H25A—C25—H25B109.5
H20A—C20—H20B109.5O3—C25—H25C109.5
H20C—C20—H20B109.5H25A—C25—H25C109.5
C19—C18—C17121.92 (18)H25B—C25—H25C109.5
C19—C18—H18119.0C1—O1—C898.32 (11)
C17—C18—H18119.0C27—O5—C28117.97 (15)
C18—C17—C16120.06 (17)C24—O3—C25115.78 (15)
C18—C17—H17120.0
O1—C8—C7—C6154.22 (17)C15—C9—C10—C112.0 (3)
C9—C8—C7—C633.4 (3)C8—C9—C10—C11177.15 (18)
C26—C8—C7—C6103.93 (19)C9—C10—C11—C121.0 (3)
O1—C8—C7—C232.90 (14)C10—C11—C12—C140.9 (3)
C9—C8—C7—C2153.74 (14)C10—C11—C12—C13178.2 (2)
C26—C8—C7—C268.95 (14)C11—C12—C14—C151.7 (3)
C2—C7—C6—C52.0 (2)C13—C12—C14—C15177.4 (2)
C8—C7—C6—C5173.92 (16)C12—C14—C15—C90.6 (3)
C7—C6—C5—C40.3 (3)C10—C9—C15—C141.3 (3)
C6—C5—C4—C31.2 (3)C8—C9—C15—C14176.61 (17)
C5—C4—C3—C21.0 (3)O1—C8—C26—C2330.30 (15)
C4—C3—C2—C70.7 (2)C9—C8—C26—C23147.58 (14)
C4—C3—C2—C1175.06 (16)C7—C8—C26—C2372.38 (15)
C6—C7—C2—C32.2 (2)O1—C8—C26—C27166.84 (13)
C8—C7—C2—C3176.24 (14)C9—C8—C26—C2749.6 (2)
C6—C7—C2—C1174.58 (14)C7—C8—C26—C2790.48 (16)
C8—C7—C2—C10.54 (15)C23—C26—C27—O4168.97 (18)
C3—C2—C1—O1151.42 (17)C8—C26—C27—O49.9 (3)
C7—C2—C1—O132.37 (14)C23—C26—C27—O57.1 (2)
C3—C2—C1—C1627.9 (2)C8—C26—C27—O5166.12 (14)
C7—C2—C1—C16155.86 (13)C27—C26—C23—C2412.2 (3)
C3—C2—C1—C23107.43 (19)C8—C26—C23—C24173.96 (14)
C7—C2—C1—C2368.79 (14)C27—C26—C23—C1159.09 (15)
O1—C1—C16—C22176.73 (15)C8—C26—C23—C12.64 (16)
C2—C1—C16—C2266.5 (2)O1—C1—C23—C2635.12 (15)
C23—C1—C16—C2262.1 (2)C16—C1—C23—C26157.38 (14)
O1—C1—C16—C174.4 (2)C2—C1—C23—C2667.14 (15)
C2—C1—C16—C17112.39 (18)O1—C1—C23—C24153.27 (14)
C23—C1—C16—C17119.00 (17)C16—C1—C23—C2431.0 (2)
C17—C16—C22—C212.6 (3)C2—C1—C23—C24104.47 (16)
C1—C16—C22—C21178.46 (18)C26—C23—C24—O2109.2 (2)
C16—C22—C21—C190.7 (3)C1—C23—C24—O260.5 (2)
C22—C21—C19—C181.6 (3)C26—C23—C24—O372.0 (2)
C22—C21—C19—C20178.3 (2)C1—C23—C24—O3118.32 (16)
C21—C19—C18—C171.9 (3)C16—C1—O1—C8179.75 (12)
C20—C19—C18—C17178.0 (2)C2—C1—O1—C852.41 (12)
C19—C18—C17—C160.0 (3)C23—C1—O1—C853.15 (12)
C22—C16—C17—C182.3 (3)C9—C8—O1—C1176.06 (12)
C1—C16—C17—C18178.81 (16)C7—C8—O1—C153.18 (12)
O1—C8—C9—C10102.59 (18)C26—C8—O1—C151.92 (12)
C7—C8—C9—C1014.1 (2)O4—C27—O5—C282.1 (3)
C26—C8—C9—C10145.51 (17)C26—C27—O5—C28173.95 (16)
O1—C8—C9—C1572.50 (18)O2—C24—O3—C255.0 (3)
C7—C8—C9—C15170.83 (15)C23—C24—O3—C25176.13 (17)
C26—C8—C9—C1539.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O3i0.962.563.461 (3)157
C28—H28B···O3ii0.962.523.478 (3)173
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···O3i0.962.563.461 (3)157
C28—H28B···O3ii0.962.523.478 (3)173
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z.
Acknowledgements top

The authors thank Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

references
References top

Bailey, J. H., Coulter, C. V., Pratt, A. J. & Robinson, W. T. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 589–592.

Balakrishnan, B., Nandakumar, M., Seshadri, P. R. & Mohanakrishnan, A. K. (2013). Acta Cryst. E69, o323.

Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Denmark, S. E. & Thorarensen, A. (1996). Chem. Rev. 96, 137–166.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Takahashi, I., Tsuzuki, M., Kitajima, H., Hetanaka, M., Maeda, S., Yamano, A., Ohta, T. & Hosoi, S. (2003). Anal. Sci. 19, 973–974.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.