organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Methyl­phen­yl)-1,3,5-triazine-2,4-di­amine–4-methyl­benzoic acid (1/1)

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Government Arts College (Autonomous), Thanthonimalai, Karur 639 005, Tamil Nadu, India
*Correspondence e-mail: arazaki@usm.my

(Received 7 May 2013; accepted 20 May 2013; online 25 May 2013)

The 4-methyl­benzoic acid mol­ecule of the title adduct, C10H11N5·C8H8O2, is approximately planar with a dihedral angle of 6.3 (2)° between the carb­oxy­lic acid group and the benzene ring. In the triazine mol­ecule, the plane of the triazine ring makes a dihedral angle of 29.2 (2)° with that of the adjacent benzene ring. In the crystal, the acid and base mol­ecules are linked via N—H⋯O and O—H⋯N hydrogen bonds with an R22(8) motif, and the acid–base pairs are further connected via N—H⋯N hydrogen bonds with R22(8) motifs, forming a supra­molecular ribbon along [101]. Between the tapes, a weak C—H⋯π inter­action is observed.

Related literature

The background to this study has been described in the preceding paper, see: Thanigaimani et al. (2013[Thanigaimani, K., Khalib, N. C., Razak, I. A., Lavanya, P. & Balasubramani, K. (2013). Acta Cryst. E69, o968-o969.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N5·C8H8O2

  • Mr = 337.38

  • Monoclinic, C c

  • a = 11.1271 (3) Å

  • b = 20.9492 (6) Å

  • c = 7.4189 (2) Å

  • β = 101.321 (2)°

  • V = 1695.73 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.982

  • 8715 measured reflections

  • 1932 independent reflections

  • 1811 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.135

  • S = 1.19

  • 1932 reflections

  • 244 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.77 (6) 1.92 (6) 2.682 (4) 171 (6)
N4—H1N4⋯O1 0.97 (6) 1.98 (6) 2.936 (5) 169 (6)
N4—H2N4⋯N3i 0.84 (4) 2.26 (4) 3.099 (5) 172 (4)
N5—H1N5⋯N1ii 0.90 (6) 2.11 (6) 3.003 (5) 173 (5)
C10—H10CCg2iii 0.98 2.83 3.723 (6) 152
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

This work follows on from our previous report on 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine–benzoic acid (1/1) (Thanigaimani et al., 2013).

The asymmetric unit (Fig. 1) contains one 2,4-diamino-6-(4-methylphenyl)- 1,3,5-triazine molecule and one 4-methylbenzoic acid molecule. The dihedral angle between the triazine ring [N1/C1/N2/C2/N3/C3, maximum deviation = 0.003 (4) Å for atom N1] and the plane formed by the benzoic acid molecule (O1/O2/C11–C18) is 12.04 (19)°. The triazine ring forms a dihedral angle of 29.2 (2)° with the benzene ring (C4–C10). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal (Fig. 2), the triazine molecules are base-paired with a R22(8) graph-set motifs (Bernstein et al., 1995) on either side via N4—H2N4···N3ii and N5—H1N5···N1i hydrogen bonds (symmetry codes in Table 1) and further interact with the carboxyl group of 4-methylbenzoic acid molecules via N4—H1N4···O1 and O2—H1O2···N2 hydrogen bonds, forming an R22(8) motif and a supramolecular ribbon along the [101]. In addition, the crystal structure is stabilized by weak C—H···π interactions (Table 1) involving the C4–C9 (centroid Cg2) ring.

Related literature top

The background to this study has been described in the preceding paper, see: Thanigaimani et al. (2013). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine (50 mg Aldrich) and 4-methylbenzoic acid (34 mg Aldrich) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

O- and N-bound H atoms were located in a difference Fourier maps. The O-bound H atom was refined freely [refined distance: O2—H1O2 = 0.77 (6) Å], while for the N-bound H atoms the positions were refined with Uiso(H) = 1.5Ueq(N). [refined distances: N5—H1N5 = 0.90 (6) Å, N5—H2N5 = 0.89 (6) Å, N4—H1N4 = 0.97 (6) Å, N4—H2N4 = 0.849 (11) Å]. A bond-length restraint of N—H = 0.85 (1) Å was also applied for N4—H2N4. The remaining hydrogen atoms were positioned geometrically (C—H = 0.95–0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group. In the final refinement, 1279 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
6-(4-Methylphenyl)-1,3,5-triazine-2,4-diamine–4-methylbenzoic acid (1/1) top
Crystal data top
C10H11N5·C8H8O2F(000) = 712
Mr = 337.38Dx = 1.322 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6815 reflections
a = 11.1271 (3) Åθ = 3.2–33.7°
b = 20.9492 (6) ŵ = 0.09 mm1
c = 7.4189 (2) ÅT = 100 K
β = 101.321 (2)°Plate, colourless
V = 1695.73 (8) Å30.40 × 0.40 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1932 independent reflections
Radiation source: fine-focus sealed tube1811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.965, Tmax = 0.982k = 2727
8715 measured reflectionsl = 97
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0311P)2 + 4.4301P]
where P = (Fo2 + 2Fc2)/3
1932 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.27 e Å3
3 restraintsΔρmin = 0.27 e Å3
Crystal data top
C10H11N5·C8H8O2V = 1695.73 (8) Å3
Mr = 337.38Z = 4
Monoclinic, CcMo Kα radiation
a = 11.1271 (3) ŵ = 0.09 mm1
b = 20.9492 (6) ÅT = 100 K
c = 7.4189 (2) Å0.40 × 0.40 × 0.20 mm
β = 101.321 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1932 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1811 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.982Rint = 0.031
8715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0553 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.27 e Å3
1932 reflectionsΔρmin = 0.27 e Å3
244 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4994 (3)0.25996 (17)0.3556 (5)0.0165 (8)
N20.3884 (4)0.16295 (15)0.2802 (6)0.0170 (7)
N30.2919 (3)0.26326 (16)0.1933 (6)0.0164 (7)
N40.5874 (3)0.16186 (18)0.4348 (5)0.0200 (8)
H1N40.581 (5)0.116 (3)0.447 (8)0.030*
H2N40.646 (3)0.183 (2)0.496 (7)0.030*
N50.1876 (3)0.16862 (19)0.1268 (6)0.0235 (9)
H1N50.126 (5)0.188 (3)0.049 (9)0.035*
H2N50.188 (5)0.126 (3)0.120 (8)0.035*
C10.4899 (4)0.19523 (19)0.3563 (6)0.0156 (8)
C20.2928 (4)0.19889 (19)0.2015 (6)0.0169 (8)
C30.3982 (4)0.29042 (16)0.2738 (7)0.0150 (7)
C40.4034 (4)0.36131 (17)0.2713 (7)0.0166 (8)
C50.2976 (4)0.3973 (2)0.2713 (6)0.0189 (9)
H5A0.22170.37620.26900.023*
C60.3023 (4)0.4632 (2)0.2746 (7)0.0228 (10)
H6A0.22960.48700.27440.027*
C70.4126 (4)0.49501 (18)0.2781 (7)0.0216 (9)
C80.5170 (4)0.4596 (2)0.2779 (7)0.0236 (10)
H8A0.59260.48090.27980.028*
C90.5136 (4)0.39311 (19)0.2749 (6)0.0187 (9)
H9A0.58650.36950.27530.022*
C100.4170 (5)0.5672 (2)0.2789 (8)0.0306 (11)
H10A0.49880.58140.33960.046*
H10B0.35580.58380.34550.046*
H10C0.39910.58300.15210.046*
O10.5390 (3)0.02412 (14)0.4355 (5)0.0245 (7)
O20.3551 (3)0.03627 (15)0.2514 (5)0.0248 (7)
C110.3135 (5)0.1599 (2)0.1798 (7)0.0298 (12)
H11A0.24500.17700.09700.036*
C120.3269 (4)0.0939 (2)0.1967 (7)0.0253 (10)
H12A0.26830.06620.12580.030*
C130.4271 (4)0.0689 (2)0.3187 (6)0.0201 (10)
C140.5126 (5)0.1101 (2)0.4226 (7)0.0268 (10)
H14A0.58070.09340.50690.032*
C150.4970 (5)0.1754 (2)0.4014 (7)0.0305 (12)
H15A0.55570.20330.47110.037*
C160.3977 (6)0.20104 (19)0.2808 (10)0.0338 (12)
C170.3816 (7)0.2731 (2)0.2623 (12)0.0459 (16)
H17A0.34500.28380.13480.069*
H17B0.32780.28790.34370.069*
H17C0.46170.29390.29670.069*
C180.4468 (4)0.0016 (2)0.3420 (6)0.0202 (9)
H1O20.370 (6)0.072 (3)0.253 (9)0.038 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0140 (17)0.0145 (17)0.0190 (18)0.0002 (14)0.0018 (15)0.0001 (15)
N20.0159 (16)0.0136 (14)0.0195 (15)0.0007 (15)0.0012 (13)0.0001 (17)
N30.0125 (15)0.0127 (17)0.0224 (18)0.0006 (14)0.0002 (14)0.0021 (15)
N40.0155 (17)0.0140 (17)0.027 (2)0.0007 (14)0.0055 (15)0.0017 (15)
N50.0146 (18)0.0144 (19)0.037 (2)0.0030 (14)0.0063 (17)0.0027 (16)
C10.0154 (18)0.0128 (18)0.0183 (19)0.0004 (16)0.0024 (16)0.0000 (17)
C20.0151 (18)0.017 (2)0.018 (2)0.0021 (17)0.0015 (16)0.0000 (18)
C30.0138 (17)0.0147 (16)0.0168 (17)0.0002 (17)0.0041 (14)0.0008 (19)
C40.0211 (19)0.0130 (16)0.0141 (18)0.0003 (18)0.0009 (15)0.0020 (19)
C50.0129 (19)0.020 (2)0.021 (2)0.0008 (16)0.0049 (16)0.0015 (17)
C60.022 (2)0.019 (2)0.024 (2)0.0083 (18)0.0040 (18)0.0040 (18)
C70.032 (2)0.0132 (17)0.0169 (18)0.0022 (19)0.0026 (18)0.000 (2)
C80.025 (2)0.017 (2)0.027 (2)0.0084 (17)0.0001 (19)0.0010 (18)
C90.018 (2)0.0148 (19)0.021 (2)0.0005 (16)0.0018 (17)0.0002 (17)
C100.047 (3)0.0130 (18)0.030 (2)0.002 (2)0.003 (2)0.001 (2)
O10.0219 (16)0.0158 (13)0.0323 (18)0.0005 (13)0.0035 (13)0.0004 (14)
O20.0205 (15)0.0135 (14)0.037 (2)0.0021 (12)0.0022 (14)0.0019 (14)
C110.031 (3)0.024 (2)0.039 (3)0.013 (2)0.019 (2)0.015 (2)
C120.025 (2)0.020 (2)0.034 (3)0.0007 (18)0.014 (2)0.007 (2)
C130.019 (2)0.0170 (19)0.028 (3)0.0016 (16)0.0145 (19)0.0006 (17)
C140.032 (3)0.019 (2)0.033 (3)0.0043 (19)0.015 (2)0.003 (2)
C150.041 (3)0.020 (2)0.036 (3)0.008 (2)0.020 (2)0.009 (2)
C160.052 (3)0.0146 (19)0.045 (3)0.001 (2)0.034 (2)0.005 (3)
C170.074 (4)0.017 (2)0.058 (4)0.008 (3)0.041 (3)0.005 (3)
C180.019 (2)0.0158 (19)0.026 (2)0.0017 (17)0.0062 (18)0.002 (2)
Geometric parameters (Å, º) top
N1—C31.333 (5)C9—H9A0.9500
N1—C11.360 (5)C10—H10A0.9800
N2—C21.340 (5)C10—H10B0.9800
N2—C11.342 (6)C10—H10C0.9800
N3—C31.342 (5)O1—C181.215 (5)
N3—C21.350 (5)O2—C181.324 (5)
N4—C11.326 (5)O2—H1O20.77 (6)
N4—H1N40.97 (6)C11—C161.380 (8)
N4—H2N40.849 (11)C11—C121.395 (6)
N5—C21.351 (5)C11—H11A0.9500
N5—H1N50.90 (6)C12—C131.393 (6)
N5—H2N50.89 (6)C12—H12A0.9500
C3—C41.487 (5)C13—C141.398 (6)
C4—C91.390 (6)C13—C181.498 (6)
C4—C51.398 (6)C14—C151.384 (6)
C5—C61.382 (6)C14—H14A0.9500
C5—H5A0.9500C15—C161.386 (8)
C6—C71.392 (7)C15—H15A0.9500
C6—H6A0.9500C16—C171.523 (6)
C7—C81.378 (6)C17—H17A0.9800
C7—C101.512 (5)C17—H17B0.9800
C8—C91.394 (6)C17—H17C0.9800
C8—H8A0.9500
C3—N1—C1114.8 (3)C8—C9—H9A120.0
C2—N2—C1115.5 (3)C7—C10—H10A109.5
C3—N3—C2113.9 (3)C7—C10—H10B109.5
C1—N4—H1N4120 (3)H10A—C10—H10B109.5
C1—N4—H2N4116 (4)C7—C10—H10C109.5
H1N4—N4—H2N4122 (5)H10A—C10—H10C109.5
C2—N5—H1N5123 (4)H10B—C10—H10C109.5
C2—N5—H2N5119 (4)C18—O2—H1O2113 (5)
H1N5—N5—H2N5115 (5)C16—C11—C12121.4 (5)
N4—C1—N2117.9 (4)C16—C11—H11A119.3
N4—C1—N1118.0 (4)C12—C11—H11A119.3
N2—C1—N1124.1 (4)C13—C12—C11119.2 (5)
N2—C2—N3125.4 (4)C13—C12—H12A120.4
N2—C2—N5117.7 (4)C11—C12—H12A120.4
N3—C2—N5116.9 (4)C12—C13—C14119.9 (4)
N1—C3—N3126.3 (3)C12—C13—C18121.7 (4)
N1—C3—C4116.9 (4)C14—C13—C18118.5 (4)
N3—C3—C4116.8 (3)C15—C14—C13119.4 (5)
C9—C4—C5118.8 (3)C15—C14—H14A120.3
C9—C4—C3121.0 (4)C13—C14—H14A120.3
C5—C4—C3120.2 (4)C14—C15—C16121.5 (5)
C6—C5—C4120.6 (4)C14—C15—H15A119.2
C6—C5—H5A119.7C16—C15—H15A119.2
C4—C5—H5A119.7C11—C16—C15118.6 (4)
C5—C6—C7120.6 (4)C11—C16—C17121.0 (6)
C5—C6—H6A119.7C15—C16—C17120.5 (6)
C7—C6—H6A119.7C16—C17—H17A109.5
C8—C7—C6118.9 (4)C16—C17—H17B109.5
C8—C7—C10120.7 (4)H17A—C17—H17B109.5
C6—C7—C10120.4 (4)C16—C17—H17C109.5
C7—C8—C9121.2 (4)H17A—C17—H17C109.5
C7—C8—H8A119.4H17B—C17—H17C109.5
C9—C8—H8A119.4O1—C18—O2123.8 (4)
C4—C9—C8120.0 (4)O1—C18—C13122.5 (4)
C4—C9—H9A120.0O2—C18—C13113.7 (4)
C2—N2—C1—N4179.5 (4)C5—C6—C7—C10179.1 (5)
C2—N2—C1—N10.5 (7)C6—C7—C8—C90.2 (8)
C3—N1—C1—N4179.7 (4)C10—C7—C8—C9179.2 (4)
C3—N1—C1—N20.7 (7)C5—C4—C9—C80.2 (7)
C1—N2—C2—N30.3 (7)C3—C4—C9—C8178.1 (4)
C1—N2—C2—N5178.5 (4)C7—C8—C9—C40.3 (7)
C3—N3—C2—N20.3 (7)C16—C11—C12—C130.2 (7)
C3—N3—C2—N5178.5 (4)C11—C12—C13—C140.1 (7)
C1—N1—C3—N30.7 (8)C11—C12—C13—C18179.6 (4)
C1—N1—C3—C4179.3 (4)C12—C13—C14—C150.6 (7)
C2—N3—C3—N10.5 (8)C18—C13—C14—C15179.2 (5)
C2—N3—C3—C4179.5 (4)C13—C14—C15—C160.7 (8)
N1—C3—C4—C928.0 (7)C12—C11—C16—C150.2 (8)
N3—C3—C4—C9152.0 (5)C12—C11—C16—C17179.5 (5)
N1—C3—C4—C5149.9 (5)C14—C15—C16—C110.3 (9)
N3—C3—C4—C530.1 (7)C14—C15—C16—C17179.0 (6)
C9—C4—C5—C60.1 (7)C12—C13—C18—O1173.4 (4)
C3—C4—C5—C6178.0 (4)C14—C13—C18—O16.4 (7)
C4—C5—C6—C70.1 (7)C12—C13—C18—O26.4 (6)
C5—C6—C7—C80.1 (8)C14—C13—C18—O2173.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.77 (6)1.92 (6)2.682 (4)171 (6)
N4—H1N4···O10.97 (6)1.98 (6)2.936 (5)169 (6)
N4—H2N4···N3i0.84 (4)2.26 (4)3.099 (5)172 (4)
N5—H1N5···N1ii0.90 (6)2.11 (6)3.003 (5)173 (5)
C10—H10C···Cg2iii0.982.833.723 (6)152
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC10H11N5·C8H8O2
Mr337.38
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)11.1271 (3), 20.9492 (6), 7.4189 (2)
β (°) 101.321 (2)
V3)1695.73 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.965, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8715, 1932, 1811
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.19
No. of reflections1932
No. of parameters244
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.77 (6)1.92 (6)2.682 (4)171 (6)
N4—H1N4···O10.97 (6)1.98 (6)2.936 (5)169 (6)
N4—H2N4···N3i0.84 (4)2.26 (4)3.099 (5)172 (4)
N5—H1N5···N1ii0.90 (6)2.11 (6)3.003 (5)173 (5)
C10—H10C···Cg2iii0.982.833.723 (6)152
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant (No. 304/PFIZIK/6312078) to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Khalib, N. C., Razak, I. A., Lavanya, P. & Balasubramani, K. (2013). Acta Cryst. E69, o968–o969.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds