supplementary materials


Acta Cryst. (2013). E69, i33    [ doi:10.1107/S1600536813011847 ]

(Thiocyanato-[kappa]S)tris(thiourea-[kappa]S)mercury(II) chloride

A. Shihabuddeen Syed, K. Rajarajan and M. NizamMohideen

Abstract top

In the title salt, [Hg(NCS)(CH4N2S)3]Cl, the Hg2+ ion is coordinated in a severely distorted tetrahedral manner by three thiourea groups and one thiocyanate anion through their S atoms. The S-Hg-S angles vary widely from 87.39 (5) to 128.02 (4)°. Weak intramolecular N-H...S hydrogen bonds are observed, which form S(6) ring motifs. In the crystal, the ions are linked by N-H...N and weak N-H...Cl interactions, generating a three-dimensional network.

Comment top

This work is part of a research project concerning the investigation of thiourea (N2H4CS) and thiocyanate (SCN) based metal organic crystalline materials and their derivatives (Ramesh et al., 2012). Transition metal thiourea and thiocyanate coordination complexes are candidate materials for device applications including their nonlinear optical properties. As ligands, both thiourea and thiocyanate are interesting due to their potential formation of metalcoordination complexes as they exhibit multifunctional coordination modes due to the presence of 'S' and 'N' donor atoms. With reference to the hard and soft acids and bases) concept (Ozutsmi et al., 1989; Bell et al., 2001), thesoft cations show a pronounced affinity for coordination with the softer ligands, while hard cations prefer coordination with harder ligands. Several crystallographic reports about mercury(II) complexes usually consist of discrete monomeric molecules with tetrahedral (somewhat distorted) coordination environments around mercury(II) (Nawaz et al., 2010). Here, we report the synthesis and structure of the title salt, [(SC(2NH2))3(SCN-)Hg(2+]+ . Cl-,(I).

In (I), the Hg2+ ion is coordinated to three softer S atoms of thiourea and one softer S atom of a thiocyanate anion in addition to the isolated chlorine ion (Fig. 1). Intramolecular N—H···S hydrogen bonds are observed which form S(6) ring motifs (Bernstein et al., 1995). Bond distances and angles are in agreement with those reported for related compounds (Safari et al., 2009; Nawaz et al., 2010). The S—Hg—S angles vary widely from 87.39 (5)° to 128.02 (4)°, indicative of a distorted tetrahedral arrangement. The SCN- moiety is planar [to within 0.007 (1) Å] with the C—N and C—S bond lengths corresponding to the values intermediate between single and double bonds. The S2—C4—N7 unit is nearly linear with a bond angle of 177.9 (6)°. In the crystal, the ions are stabilized by weak N—H···Cl, and N—H···N intermolecular interactions (Table.1) which form a three-dimensional network (Fig. 2).

Related literature top

For background to mercury(II) complexes of thiourea and thiocyanate ligands, see: Nawaz et al. (2010). For hard and soft acids and bases, see: Ozutsmi et al. (1989); Bell et al. (2001). For related structures, see: Safari et al. (2009); Nawaz et al. (2010); Ramesh et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of thiourea, ammonium thiocyanate and mercury (II) choloride were dissolved in aqueous solution in the molar ratio 3:1:1 and thoroughly mixed for an hour to obtain a homogenous mixture. The solution was allowed to evaporate slowly at ambient temperature. Colourless single crystals suitable for single-crystal XRD were obtained in 12 days.

Refinement top

All H atoms were positioned geometrically with N—H = 0.86 Å and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along the a axis. Intramolecular N—H···S hydrogen bonds and weak N—H···Cl, and N—H···N intermolecular interactions are shown as dashed lines.
(Thiocyanato-κS)tris(thiourea-κS)mercury(II) chloride top
Crystal data top
[Hg(NCS)(CH4N2S)3]ClF(000) = 1968
Mr = 522.49Dx = 2.281 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5125 reflections
a = 8.2175 (3) Åθ = 2.4–31.2°
b = 16.3257 (8) ŵ = 10.83 mm1
c = 22.6793 (10) ÅT = 293 K
V = 3042.6 (2) Å3Block, colorless
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5125 independent reflections
Radiation source: fine-focus sealed tube3579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and φ scansθmax = 31.8°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 126
Tmin = 0.140, Tmax = 0.221k = 2324
38987 measured reflectionsl = 3233
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0291P)2 + 7.0058P]
where P = (Fo2 + 2Fc2)/3
5125 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 2.17 e Å3
0 restraintsΔρmin = 1.21 e Å3
Crystal data top
[Hg(NCS)(CH4N2S)3]ClV = 3042.6 (2) Å3
Mr = 522.49Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.2175 (3) ŵ = 10.83 mm1
b = 16.3257 (8) ÅT = 293 K
c = 22.6793 (10) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5125 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3579 reflections with I > 2σ(I)
Tmin = 0.140, Tmax = 0.221Rint = 0.057
38987 measured reflectionsθmax = 31.8°
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.082Δρmax = 2.17 e Å3
S = 1.05Δρmin = 1.21 e Å3
5125 reflectionsAbsolute structure: ?
155 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2410 (5)0.1993 (3)0.42350 (17)0.0280 (8)
C21.0389 (5)0.3016 (3)0.2771 (2)0.0321 (9)
C30.7067 (6)0.0234 (3)0.43089 (19)0.0333 (9)
C41.2429 (7)0.0184 (3)0.3691 (2)0.0498 (13)
N11.3113 (5)0.1934 (3)0.37245 (16)0.0488 (12)
H1A1.40630.21420.36710.059*
H1B1.26280.16870.34390.059*
N21.3169 (5)0.2370 (3)0.46633 (17)0.0445 (10)
H2A1.41190.25750.46040.053*
H2B1.27180.24140.50040.053*
N31.0072 (6)0.3302 (3)0.32922 (19)0.0511 (11)
H3A1.03520.37940.33830.061*
H3B0.95820.29990.35470.061*
N41.1131 (6)0.3476 (3)0.2386 (2)0.0541 (12)
H4A1.14090.39670.24770.065*
H4B1.13420.32870.20400.065*
N50.6681 (6)0.0872 (3)0.46201 (18)0.0496 (11)
H5A0.66760.08440.49990.060*
H5B0.64300.13240.44480.060*
N60.7440 (8)0.0438 (3)0.4576 (2)0.0667 (15)
H6A0.74300.04580.49550.080*
H6B0.76980.08650.43750.080*
N71.2853 (8)0.0407 (4)0.4142 (2)0.0779 (18)
Hg10.92567 (2)0.123362 (12)0.340864 (7)0.03933 (7)
S11.05319 (12)0.15817 (7)0.43857 (4)0.0313 (2)
S21.18864 (19)0.01386 (9)0.30317 (6)0.0529 (4)
S30.70350 (17)0.02592 (8)0.35487 (5)0.0430 (3)
S40.98486 (18)0.20568 (7)0.25448 (5)0.0411 (3)
Cl10.66976 (13)0.27345 (7)0.39858 (4)0.0323 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (2)0.034 (2)0.0245 (18)0.0005 (16)0.0007 (15)0.0005 (16)
C20.029 (2)0.028 (2)0.040 (2)0.0008 (16)0.0019 (17)0.0016 (17)
C30.039 (3)0.029 (2)0.031 (2)0.0060 (18)0.0015 (18)0.0054 (17)
C40.060 (3)0.044 (3)0.046 (3)0.022 (3)0.006 (2)0.005 (2)
N10.032 (2)0.090 (3)0.0248 (18)0.021 (2)0.0068 (15)0.010 (2)
N20.036 (2)0.066 (3)0.0310 (19)0.019 (2)0.0034 (16)0.0137 (19)
N30.061 (3)0.037 (2)0.055 (3)0.013 (2)0.019 (2)0.0159 (19)
N40.076 (3)0.030 (2)0.057 (3)0.015 (2)0.024 (2)0.0046 (19)
N50.078 (3)0.034 (2)0.037 (2)0.007 (2)0.002 (2)0.0028 (18)
N60.123 (5)0.037 (3)0.040 (2)0.026 (3)0.002 (3)0.008 (2)
N70.110 (5)0.079 (4)0.044 (3)0.043 (4)0.005 (3)0.008 (3)
Hg10.04559 (12)0.04260 (11)0.02981 (9)0.01684 (8)0.00241 (7)0.00517 (7)
S10.0253 (5)0.0458 (6)0.0226 (4)0.0040 (4)0.0020 (4)0.0053 (4)
S20.0672 (10)0.0556 (8)0.0358 (6)0.0222 (7)0.0004 (6)0.0097 (6)
S30.0545 (8)0.0436 (7)0.0310 (5)0.0259 (6)0.0047 (5)0.0018 (5)
S40.0683 (8)0.0323 (6)0.0227 (5)0.0161 (6)0.0053 (5)0.0020 (4)
Cl10.0305 (5)0.0362 (5)0.0301 (5)0.0054 (4)0.0013 (4)0.0004 (4)
Geometric parameters (Å, º) top
C1—N11.297 (5)N2—H2B0.8600
C1—N21.309 (5)N3—H3A0.8600
C1—S11.717 (4)N3—H3B0.8600
C2—N31.297 (6)N4—H4A0.8600
C2—N41.302 (6)N4—H4B0.8600
C2—S41.707 (4)N5—H5A0.8600
C3—N61.290 (6)N5—H5B0.8600
C3—N51.298 (6)N6—H6A0.8600
C3—S31.725 (4)N6—H6B0.8600
C4—N71.141 (7)Hg1—S42.4250 (11)
C4—S21.647 (6)Hg1—S32.4422 (12)
C4—S21.647 (6)Hg1—S12.5162 (10)
N1—H1A0.8600Hg1—S22.9320 (14)
N1—H1B0.8600Hg1—S22.9320 (14)
N2—H2A0.8600
N1—C1—N2119.0 (4)C2—N4—H4B120.0
N1—C1—S1123.3 (3)H4A—N4—H4B120.0
N2—C1—S1117.7 (3)C3—N5—H5A120.0
N3—C2—N4119.9 (4)C3—N5—H5B120.0
N3—C2—S4123.4 (4)H5A—N5—H5B120.0
N4—C2—S4116.7 (4)C3—N6—H6A120.0
N6—C3—N5119.1 (4)C3—N6—H6B120.0
N6—C3—S3119.6 (4)H6A—N6—H6B120.0
N5—C3—S3121.4 (4)S4—Hg1—S3128.02 (4)
N7—C4—S2177.9 (6)S4—Hg1—S1120.18 (4)
N7—C4—S2177.9 (6)S3—Hg1—S1110.11 (4)
C1—N1—H1A120.0S4—Hg1—S287.39 (5)
C1—N1—H1B120.0S3—Hg1—S2101.05 (5)
H1A—N1—H1B120.0S1—Hg1—S295.02 (4)
C1—N2—H2A120.0S4—Hg1—S287.39 (5)
C1—N2—H2B120.0S3—Hg1—S2101.05 (5)
H2A—N2—H2B120.0S1—Hg1—S295.02 (4)
C2—N3—H3A120.0C1—S1—Hg1106.69 (14)
C2—N3—H3B120.0C4—S2—Hg197.45 (18)
H3A—N3—H3B120.0C3—S3—Hg197.71 (15)
C2—N4—H4A120.0C2—S4—Hg1108.55 (16)
N1—C1—S1—Hg114.6 (4)S2—Hg1—S2—C40 (9)
N2—C1—S1—Hg1166.6 (3)N6—C3—S3—Hg1115.5 (4)
S4—Hg1—S1—C132.03 (16)N5—C3—S3—Hg166.4 (4)
S3—Hg1—S1—C1161.59 (16)S4—Hg1—S3—C3160.34 (16)
S2—Hg1—S1—C157.87 (16)S1—Hg1—S3—C34.69 (17)
S2—Hg1—S1—C157.87 (16)S2—Hg1—S3—C3104.27 (17)
S2—C4—S2—Hg10 (100)S2—Hg1—S3—C3104.27 (17)
S4—Hg1—S2—S20.00 (8)N3—C2—S4—Hg117.9 (5)
S3—Hg1—S2—S20.00 (8)N4—C2—S4—Hg1163.4 (4)
S1—Hg1—S2—S20.00 (8)S3—Hg1—S4—C2138.25 (16)
S4—Hg1—S2—C4150.5 (2)S1—Hg1—S4—C225.45 (17)
S3—Hg1—S2—C481.2 (2)S2—Hg1—S4—C2119.74 (17)
S1—Hg1—S2—C430.5 (2)S2—Hg1—S4—C2119.74 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.483.277 (4)155
N1—H1B···S20.862.763.475 (5)142
N2—H2A···Cl1i0.862.553.335 (4)152
N3—H3B···Cl10.862.613.320 (5)141
N4—H4B···Cl1ii0.862.513.370 (5)175
N5—H5B···Cl10.862.543.363 (4)161
N5—H5A···N7iii0.862.112.933 (7)160
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, z+1/2; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.483.277 (4)155.2
N1—H1B···S20.862.763.475 (5)141.5
N2—H2A···Cl1i0.862.553.335 (4)151.5
N3—H3B···Cl10.862.613.320 (5)141.0
N4—H4B···Cl1ii0.862.513.370 (5)175.0
N5—H5B···Cl10.862.543.363 (4)160.8
N5—H5A···N7iii0.862.112.933 (7)160.0
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, z+1/2; (iii) x+2, y, z+1.
Acknowledgements top

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data. KR thanks the University Grants Commission, Government of India, for financial support granted under a Major Research Project [F. No.41–1008/2012 (SR)].

references
References top

Bell, N. A., Branston, T. N., Clegg, W., Parker, L., Raper, E. S., Sammon, C. & Constable, C. P. (2001). Inorg. Chim. Acta, 319, 130–136.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. & Ahmad, S. (2010). Acta Cryst. E66, m952.

Ozutsmi, K., Takamuku, T., Ishiguro, S. & Ohraki, H. (1989). Bull. Chem. Soc. Jpn, 62, 1875–1879.

Ramesh, V., Rajarajan, K., Kumar, K. S., Subashini, A. & NizamMohideen, M. (2012). Acta Cryst. E68, m335–m336.

Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.