

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-Dichloridobis{2-chloro-6-[(3fluorobenzyl)amino]-9-isopropyl-9Hpurine- κN^7 }platinum(II)

Zdeněk Trávníček* and Pavel Štarha

Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic Correspondence e-mail: zdenek.travnicek@upol.cz

Received 10 April 2013; accepted 14 May 2013

Key indicators: single-crystal X-ray study; T = 105 K; mean σ (C–C) = 0.003 Å; R factor = 0.015; wR factor = 0.037; data-to-parameter ratio = 13.3.

In the title compound, *trans*-[PtCl₂($C_{15}H_{15}ClFN_5$)₂], the Pt^{II} atom, located on an inversion centre, is coordinated by the purine N atoms of the 2-chloro-6-[(3-fluorobenzyl)amino]-9isopropyl-9H-purine ligands and two Cl atoms in a slightly distorted *trans*-square-planar coordination geometry [N-Pt-Cl angles = 89.91 (5) and 90.09 (5)°]. Weak intramolecular N-H···Cl contacts occur. In the crystal, C-H···Cl and C-H···F contacts, as well as weak π - π stacking interactions [centroid–centroid distances = 3.5000 (11) and 3.6495 (12) Å] connect the molecules into a three-dimensional architecture.

Related literature

For the structures of platinum(II) dichlorido complexes involving different 2-chloro-6-[(substituted-benzyl)amino]-9isopropyl-9H-purine derivatives, see: Trávníček et al. (2006); Szüčová et al. (2008). For the synthesis of 2-chloro-6-[(substituted-benzyl)amino]-9-isopropyl-9H-purine derivatives, see: Štarha et al. (2009).

V = 1640.36 (4) Å³

Mo Ka radiation

 $0.35 \times 0.35 \times 0.35$ mm

13582 measured reflections

2881 independent reflections

2726 reflections with $I > 2\sigma(I)$

 $\mu = 4.65 \text{ mm}^-$

T = 105 K

 $R_{\rm int} = 0.010$

Z = 2

Experimental

Crystal data

[PtCl₂(C₁₅H₁₅ClFN₅)₂] $M_r = 905.53$ Monoclinic, $P2_1/c$ a = 9.37786 (13) Åb = 12.86530(17) Å c = 14.2891 (2) Å $\beta = 107.9165 \ (16)^{\circ}$

Data collection

Agilent Xcalibur Sapphire2 diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) $T_{\min} = 0.293, T_{\max} = 0.293$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.015$	216 parameters
$wR(F^2) = 0.037$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$
2881 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N6-H6A···Cl2 ⁱ	0.88	2.53	3.222 (2)	136
$C13-H13A\cdots Cl2^{ii}$	0.95	2.86	3.492 (2)	125
C18-H18A···F1 ⁱⁱⁱ	0.98	2.49	3.450 (3)	166

Symmetry codes: (i) -x, -y, -z; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by Palacký University (grant No. PrF_2013_015). The authors wish to thank Mr Tomáš Šilha for performing the CHN elemental analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2166).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122

Štarha, P., Trávníček, Z. & Popa, I. (2009). J. Inorg. Biochem. 103, 978–988.

Szüčová, L., Trávníček, Z., Popa, I. & Marek, J. (2008). Polyhedron, 27, 2710-2720

Trávníček, Z., Marek, J. & Szüčová, L. (2006). Acta Cryst. E62, m1482-m1484. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, m331 [doi:10.1107/S1600536813013202]

trans-Dichloridobis{2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9*H*-purine- κN^7 }platinum(II)

Zdeněk Trávníček and Pavel Štarha

S1. Comment

In the title compound, the Pt^{II} atom is located on an inversion centre and thus, the asymmetric unit contains one-half of the described platinum(II) complex (Fig. 1). The central Pt^{II} atom is four-coordinated by two chloride anions [Pt—Cl = 2.2940 (5) Å] and two 2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9*H*-purine molecules [Pt—N = 2.011 (2) Å], which are bonded to platinum through their N7 atoms of the purine moieties. The geometry of the complex is slightly distorted square-planar with the N—Pt—Cl angles in the vicinity of the central metal atom of 89.91 (5)° and 90.09 (5)°, and the mean plane fitted through the PtCl₂N₂ unit (r.m.s. deviation = 0.000 Å) being planar. Both the essentially planar purine moieties [with the maximum deviation of 0.050 (2) Å for the C5 atom] are mutually coplanar and each of them forms the dihedral angle of 62.04 (3)° and 49.58 (5)° with the PtCl₂N₂ unit, and the benzene ring, respectively (Fig. 1). The molecules are connected together through weak C13—H13A···Cl2, C18—H18A···F1 and π ··· π (between the six-membered pyrimidine and benzene rings) intermolecular interactions into a three-dimensional architecture (Fig. 2 and 3, Table 1).

S2. Experimental

The solution of 2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9*H*-purine (0.5 mmol; prepared according to the previously described procedure, (Štarha *et al.*, 2009) in acetone (10 ml) was slowly poured into the distilled water solution of K_2PtCl_4 (0.25 mmol). The reaction mixture was stirred at laboratory temperature, until the initial orange colour turned to yellow. The solid was collected by filtration and washed with distilled water and acetone. Part of the product was recrystallized from *N*,*N*`-dimethylformamide. The crystals suitable for a single-crystal X-ray analysis formed after two weeks. Analysis calculated for $C_{30}H_{30}N_{10}Cl_4F_2Pt_1$: C 39.8, H 3.3, N 15.5%; found: C 39.9, H 3.3, N 15.3%. Elemental analysis (C, H, N) was performed on a Thermo Scientific Flash 2000 CHNO-S Analyzer.

S3. Refinement

Non-hydrogen atoms were refined anisotropically and hydrogen atoms were located in difference maps and refined using the riding model with C—H = 0.95 (CH), C—H = 0.99 (CH₂), C—H = 0.98 (CH₃) Å, and N—H = 0.88 Å, with U_{iso} (H) = $1.2U_{eq}$ (CH, CH₂, NH) and $1.5U_{eq}$ (CH₃). The maximum and minimum residual electron density peaks of 0.52 and -0.32 e Å⁻³ were located 0.87 Å, and 0.27 Å from the Pt1, and H6A atoms, respectively.

Figure 1

The molecular structure of the title compound with the atom numbering scheme and the non-hydrogen atoms at the 50% probability level. Dashed lines indicate weak N6—H6A···Cl2ⁱ intramolecular interactions (symmetry code: i) -x, -y, -z).

Figure 2

Packing diagram of the title compound viewed along the *a* axis. Dashed lines indicate weak C13—H13A^{iv}···Cl2 intermolecular and π ··· π stacking interactions (*Cg*···*Cg* = 3.5001 Å) (symmetry code: iv) *x*, -y+1/2, *z* + 1/2).

Figure 3

Packing diagram of the title compound viewed along the *b* axis. Dashed lines indicate weak C18—H18A…F1ⁱⁱⁱ intermolecular interactions (symmetry code: iii) -x+1, -y, -z).

trans-Dichloridobis{2-chloro-6-[(3-fluorobenzyl)amino]-9-isopropyl-9H-purine-κN⁷}platinum(II)

F(000) = 888

 $\theta = 3.0-31.7^{\circ}$ $\mu = 4.65 \text{ mm}^{-1}$

T = 105 K

 $D_{\rm x} = 1.833 {\rm Mg} {\rm m}^{-3}$

Prism, yellow-orange

 $0.35 \times 0.35 \times 0.35$ mm

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 15658 reflections

Crystal data

[PtCl₂(C₁₅H₁₅ClFN₅)₂] $M_r = 905.53$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.37786 (13) Å b = 12.86530 (17) Å c = 14.2891 (2) Å $\beta = 107.9165$ (16)° V = 1640.36 (4) Å³ Z = 2

Data collection

Agilent Xcalibur Sapphire2	13582 measured reflections
	2881 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2726 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.010$
Detector resolution: 8.3611 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 3.0^\circ$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -15 \rightarrow 13$
(CrysAlis PRO; Agilent, 2012)	$l = -16 \rightarrow 16$
$T_{\min} = 0.293, \ T_{\max} = 0.293$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0204P)^2 + 1.5464P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.52$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Special details

direct methods

 $R[F^2 > 2\sigma(F^2)] = 0.015$

Primary atom site location: structure-invariant

 $wR(F^2) = 0.037$

2881 reflections

216 parameters

0 restraints

S = 1.10

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pt1	0.0000	0.0000	0.0000	0.01222 (5)	
Cl1	0.73503 (6)	0.18413 (6)	0.31702 (4)	0.03616 (16)	
Cl2	-0.15533 (5)	0.11059 (4)	0.04896 (4)	0.02297 (12)	
F1	0.32167 (15)	0.15374 (11)	-0.40416 (9)	0.0297 (3)	

N1	0.52347 (19)	0.13487 (14)	0.15853 (12)	0.0174 (4)
N3	0.49172 (18)	0.08828 (14)	0.31434 (12)	0.0164 (4)
N6	0.34612 (19)	0.10095 (14)	0.00859 (12)	0.0176 (4)
H6A	0.2599	0.0723	-0.0239	0.021*
N7	0.1537 (2)	0.01264 (12)	0.13330 (14)	0.0145 (4)
N9	0.2482 (2)	0.01119 (12)	0.29616 (14)	0.0148 (4)
C2	0.5616 (2)	0.12816 (17)	0.25559 (15)	0.0189 (4)
C4	0.3566 (2)	0.05155 (15)	0.26050 (14)	0.0137 (4)
C5	0.2990 (2)	0.05145 (15)	0.15906 (14)	0.0137 (4)
C6	0.3894 (2)	0.09529 (15)	0.10649 (14)	0.0140 (4)
C8	0.1290 (3)	-0.01030 (15)	0.21725 (17)	0.0160 (4)
H8A	0.0377	-0.0387	0.2215	0.019*
С9	0.4310 (2)	0.15101 (17)	-0.04837 (15)	0.0187 (4)
H9A	0.5135	0.1049	-0.0524	0.022*
H9B	0.4755	0.2165	-0.0159	0.022*
C10	0.3281 (2)	0.17380 (15)	-0.15035 (15)	0.0157 (4)
C11	0.3731 (2)	0.15135 (16)	-0.23221 (15)	0.0179 (4)
H11A	0.4677	0.1201	-0.2251	0.021*
C12	0.2768 (2)	0.17560 (16)	-0.32396 (15)	0.0179 (4)
C13	0.1394 (2)	0.22057 (16)	-0.33922 (15)	0.0205 (4)
H13A	0.0766	0.2364	-0.4037	0.025*
C14	0.0949 (2)	0.24231 (17)	-0.25725 (16)	0.0209 (4)
H14A	0.0000	0.2733	-0.2652	0.025*
C15	0.1886 (2)	0.21895 (16)	-0.16387 (15)	0.0191 (4)
H15A	0.1569	0.2340	-0.1083	0.023*
C16	0.2665 (3)	-0.01102 (16)	0.40122 (16)	0.0181 (5)
H16A	0.3434	0.0378	0.4424	0.022*
C17	0.1208 (3)	0.00727 (17)	0.42384 (19)	0.0238 (5)
H17A	0.0852	0.0780	0.4042	0.036*
H17B	0.1375	-0.0014	0.4945	0.036*
H17C	0.0455	-0.0429	0.3874	0.036*
C18	0.3242 (3)	-0.1208 (2)	0.42492 (17)	0.0307 (5)
H18A	0.4155	-0.1299	0.4062	0.046*
H18B	0.2477	-0.1702	0.3883	0.046*
H18C	0.3466	-0.1333	0.4956	0.046*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.00955 (7)	0.01405 (7)	0.01116 (7)	-0.00130 (4)	0.00039 (5)	-0.00091 (4)
Cl1	0.0192 (3)	0.0674 (5)	0.0179 (3)	-0.0222 (3)	-0.0002 (2)	0.0010 (3)
Cl2	0.0140 (2)	0.0248 (3)	0.0274 (3)	0.0009 (2)	0.0023 (2)	-0.0114 (2)
F1	0.0371 (8)	0.0390 (8)	0.0154 (6)	0.0029 (6)	0.0115 (6)	-0.0034 (6)
N1	0.0135 (8)	0.0234 (9)	0.0147 (8)	-0.0018 (7)	0.0034 (7)	0.0004 (7)
N3	0.0122 (8)	0.0219 (9)	0.0140 (8)	-0.0012 (7)	0.0022 (7)	-0.0011 (7)
N6	0.0149 (8)	0.0232 (9)	0.0123 (8)	-0.0060 (7)	0.0008 (7)	0.0012 (7)
N7	0.0133 (9)	0.0159 (9)	0.0130 (9)	-0.0009 (6)	0.0022 (7)	-0.0001 (6)
N9	0.0141 (9)	0.0180 (9)	0.0112 (9)	-0.0013 (6)	0.0024 (7)	0.0007 (6)

C2	0.0112 (9)	0.0260 (12)	0.0174 (10)	-0.0028 (8)	0.0010 (8)	-0.0011 (9)	
C4	0.0133 (9)	0.0137 (10)	0.0140 (10)	0.0016 (8)	0.0039 (8)	0.0006 (8)	
C5	0.0124 (9)	0.0125 (10)	0.0145 (9)	0.0013 (8)	0.0015 (8)	-0.0010 (8)	
C6	0.0128 (9)	0.0133 (10)	0.0148 (10)	0.0016 (8)	0.0026 (8)	-0.0006 (8)	
C8	0.0125 (11)	0.0189 (11)	0.0155 (11)	-0.0032 (8)	0.0024 (9)	-0.0003 (8)	
C9	0.0155 (10)	0.0247 (11)	0.0158 (10)	-0.0026 (9)	0.0046 (8)	0.0018 (9)	
C10	0.0166 (10)	0.0139 (10)	0.0163 (10)	-0.0030 (8)	0.0046 (8)	0.0005 (8)	
C11	0.0177 (10)	0.0170 (10)	0.0192 (10)	0.0007 (8)	0.0059 (8)	0.0010 (8)	
C12	0.0247 (11)	0.0170 (10)	0.0138 (10)	-0.0026 (9)	0.0085 (9)	-0.0006 (8)	
C13	0.0222 (11)	0.0191 (11)	0.0169 (10)	-0.0020 (9)	0.0009 (8)	0.0044 (8)	
C14	0.0148 (10)	0.0200 (11)	0.0268 (11)	0.0022 (8)	0.0050 (9)	0.0051 (9)	
C15	0.0214 (11)	0.0196 (11)	0.0187 (10)	0.0007 (9)	0.0098 (9)	0.0009 (9)	
C16	0.0164 (11)	0.0283 (12)	0.0097 (10)	-0.0043 (8)	0.0039 (9)	-0.0014 (8)	
C17	0.0232 (13)	0.0290 (13)	0.0227 (13)	-0.0019 (9)	0.0121 (10)	-0.0015 (9)	
C18	0.0334 (13)	0.0408 (14)	0.0195 (11)	0.0122 (11)	0.0103 (10)	0.0117 (10)	

Geometric parameters (Å, °)

Pt1—N7	2.0108 (18)	С9—Н9А	0.9900	
Pt1—N7 ⁱ	2.0109 (18)	С9—Н9В	0.9900	
Pt1—Cl2	2.2940 (5)	C10—C15	1.390 (3)	
Pt1-Cl2 ⁱ	2.2940 (5)	C10—C11	1.390 (3)	
Cl1—C2	1.748 (2)	C11—C12	1.380 (3)	
F1-C12	1.366 (2)	C11—H11A	0.9500	
N1—C2	1.324 (3)	C12—C13	1.368 (3)	
N1—C6	1.348 (3)	C13—C14	1.387 (3)	
N3—C2	1.317 (3)	C13—H13A	0.9500	
N3—C4	1.349 (3)	C14—C15	1.386 (3)	
N6—C6	1.333 (3)	C14—H14A	0.9500	
N6—C9	1.453 (3)	C15—H15A	0.9500	
N6—H6A	0.8800	C16—C18	1.513 (3)	
N7—C8	1.323 (3)	C16—C17	1.516 (3)	
N7—C5	1.390 (3)	C16—H16A	1.0000	
N9—C8	1.350 (3)	C17—H17A	0.9800	
N9—C4	1.372 (3)	C17—H17B	0.9800	
N9—C16	1.485 (3)	C17—H17C	0.9800	
C4—C5	1.382 (3)	C18—H18A	0.9800	
С5—С6	1.412 (3)	C18—H18B	0.9800	
C8—H8A	0.9500	C18—H18C	0.9800	
C9—C10	1.508 (3)			
N7—Pt1—N7 ⁱ	180.0	H9A—C9—H9B	108.3	
N7—Pt1—Cl2	89.91 (5)	C15—C10—C11	119.10 (19)	
N7 ⁱ —Pt1—Cl2	90.09 (5)	C15—C10—C9	120.70 (18)	
N7—Pt1—Cl2 ⁱ	90.09 (5)	C11—C10—C9	120.19 (18)	
N7 ⁱ —Pt1—Cl2 ⁱ	89.91 (5)	C12-C11-C10	118.25 (19)	
Cl2-Pt1-Cl2 ⁱ	180.00 (3)	C12—C11—H11A	120.9	
C2—N1—C6	117.27 (17)	C10—C11—H11A	120.9	

109.68 (17)	C13—C12—F1	118.13 (19)
124.74 (17)	C13—C12—C11	123.80 (19)
117.6	F1—C12—C11	118.06 (19)
117.6	C12—C13—C14	117.65 (19)
105.71 (18)	C12—C13—H13A	121.2
124.49 (15)	C14—C13—H13A	121.2
129.68 (14)	C15—C14—C13	120.2 (2)
106.56 (18)	C15—C14—H14A	119.9
127.83 (19)	C13—C14—H14A	119.9
125.45 (18)	C14—C15—C10	121.01 (19)
131.76 (19)	C14—C15—H15A	119.5
114.12 (15)	C10—C15—H15A	119.5
114.11 (15)	N9—C16—C18	109.15 (17)
126.44 (18)	N9—C16—C17	110.76 (19)
126.43 (18)	C18—C16—C17	112.39 (19)
107.08 (17)	N9—C16—H16A	108.1
108.25 (17)	C18—C16—H16A	108.1
116.90 (17)	C17—C16—H16A	108.1
134.64 (18)	С16—С17—Н17А	109.5
119.28 (18)	C16—C17—H17B	109.5
122.78 (18)	H17A—C17—H17B	109.5
117.92 (17)	C16—C17—H17C	109.5
112.38 (19)	H17A—C17—H17C	109.5
123.8	H17B—C17—H17C	109.5
123.8	C16-C18-H18A	109.5
109.24 (16)	C16—C18—H18B	109.5
109.8	H18A—C18—H18B	109.5
109.8	C16—C18—H18C	109.5
109.8	H18A—C18—H18C	109.5
109.8	H18B—C18—H18C	109.5
	109.68 (17) $124.74 (17)$ 117.6 117.6 $105.71 (18)$ $124.49 (15)$ $129.68 (14)$ $106.56 (18)$ $127.83 (19)$ $125.45 (18)$ $131.76 (19)$ $114.12 (15)$ $114.12 (15)$ $114.11 (15)$ $126.44 (18)$ $107.08 (17)$ $108.25 (17)$ $116.90 (17)$ $134.64 (18)$ $119.28 (18)$ $122.78 (18)$ $122.78 (18)$ $117.92 (17)$ $112.38 (19)$ 123.8 123.8 $109.24 (16)$ 109.8 109.8 109.8	109.68(17) $C13-C12-F1$ $124.74(17)$ $C13-C12-C11$ 117.6 $F1-C12-C11$ 117.6 $C12-C13-C14$ $105.71(18)$ $C12-C13-H13A$ $124.49(15)$ $C14-C13-H13A$ $124.49(15)$ $C14-C13-H13A$ $129.68(14)$ $C15-C14-C13$ $106.56(18)$ $C15-C14-H14A$ $127.83(19)$ $C13-C14-H14A$ $125.45(18)$ $C14-C15-C10$ $131.76(19)$ $C14-C15-H15A$ $114.12(15)$ $C10-C15-H15A$ $114.12(15)$ $C16-C17$ $126.44(18)$ $N9-C16-C17$ $126.43(18)$ $C18-C16-H16A$ $108.25(17)$ $C18-C16-H16A$ $108.25(17)$ $C18-C16-H16A$ $16.90(17)$ $C17-C16-H16A$ $19.28(18)$ $C16-C17-H17B$ $122.78(18)$ $H17A-C17-H17B$ $117.92(17)$ $C16-C17-H17C$ 123.8 $C16-C18-H18A$ $109.24(16)$ $C16-C18-H18B$ 109.8 $H18A-C18-H18C$ 109.8 $H18A-C18-H18C$ 109.8 $H18B-C18-H18C$

Symmetry code: (i) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A	
N6—H6A····Cl2 ⁱ	0.88	2.53	3.222 (2)	136	
C13—H13 <i>A</i> ···Cl2 ⁱⁱ	0.95	2.86	3.492 (2)	125	
C18—H18A····F1 ⁱⁱⁱ	0.98	2.49	3.450 (3)	166	

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) *x*, -*y*+1/2, *z*-1/2; (iii) -*x*+1, -*y*, -*z*.