

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[1*H*-imidazol-3-ium [di-μ-nitratosodium]]

Chahrazed Trifa,^a Amira Bouhali,^a Sofiane Bouacida,^{a,b}* Chaouki Boudaren^a and Thierry Bataille^c

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine, 25000, Algeria, ^bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria, and ^cSciences Chimiques de Rennes, UMR 6226 CNRS - Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France

Correspondence e-mail: Bouacida_Sofiane@yahoo.fr

Received 25 April 2013; accepted 1 May 2013

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.084; data-to-parameter ratio = 14.0.

In the title compound $\{(C_3H_5N_2)[Na(NO_3)_2]\}_n$, the Na^I ion is coordinated by eight O atoms from three bidentate nitrate anions and two O atoms from two monodentate nitrate anions, displaying a bicapped trigonal-prismatic geometry. The imidazolium cation is essentially planar (r.m.s. deviation for all non-H atoms = 0.0018 Å). In the crystal, the Na^I ions are connected by bridging nitrate ligands, forming layers parallel to (010). The imidazolium cations are sandwiched between these layers. Weak C-H···O hydrogen bonds link the layers into a three-dimensional network. In addtion, π - π interactions between the imidazolium rings [centroid-centroid distance = 3.588 (3) Å] are observed.

Related literature

For applications of imidazole and its derivatives, see: Huang *et al.* (2008, 2011). For the preparation and characterization of some metal complexes of imidazolium, see: Gao *et al.* (2009); Zhang *et al.* (2011); Zhu (2012); Han *et al.* (2007); Wenyan *et al.* (2011).

Experimental

Crystal data $(C_3H_5N_2)[Na(NO_3)_2]$ $M_r = 216.1$ Monoclinic, $P2_1/c$

a = 3.5875 (3) Å

c = 8.819 (6) Å

 $\beta = 95.546 \ (4)^{\circ}$

b = 24.8548 (17) Å

 $V = 782.7 (5) \text{ Å}^3$ Z = 4Mo K\alpha radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 150 K $0.52 \times 0.15 \times 0.13 \text{ mm}$

9892 measured reflections

 $R_{\rm int} = 0.029$

1778 independent reflections

1541 reflections with $I > 2\sigma(I)$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{\min} = 0.884, T_{\max} = 0.972$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	127 parameters
WR(F) = 0.084 S = 1.10	$\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$
1778 reflections	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected bond lengths (Å).

Na1-O12	2.4321 (16)	Na1-O13 ⁱⁱ	2,5730 (14)
Na1-O21	2.4639 (14)	Na1-O11 ⁱⁱ	2.5910 (19)
Na1-O13 ⁱ	2.5106 (13)	Na1-O11	2.6239 (17)
Na1-O23	2.5338 (13)	Na1-O21 ⁱⁱⁱ	2.6776 (14)

Symmetry codes: (i) x + 1, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) x - 1, y, z.

metal-organic compounds

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C1-H1···O23 ^{iv}	0.95	2.50	3.438 (3)	168
$C4{-}H4{\cdots}O11^v$	0.95	2.41	3.355 (3)	173
Symmetry codes: (iv)	-x + 1, -y, -z	x + 2; (v) x, -y	$+\frac{1}{2}, z - \frac{1}{2}.$	

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *CRYSCAL* (T. Roisnel, local program).

The authors thank MESRS and ATRST (Algérie) for financial support. They also thank Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for his technical assistance with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5609).

References

- Brandenburg, K. & Berndt, M. (2001). *DIAMOND*. Crystal Impact, Bonn, Germany.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. E65, m561.
- Han, W.-H., Dang, L.-L. & Zhang, W.-J. (2007). Z. Kristallogr. New Cryst. Struct. 222, 403–404.
- Huang, X.-F., Fu, D.-W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 1795– 1797.
- Huang, Z.-J., Tang, J.-N., Luo, Z.-R., Wang, D.-Y. & Wei, H. (2011). Acta Cryst. E67, m408.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wenyan, B., Guanghua, L., Xue, Q., Huo, Y. & Wang, G. (2011). Z. Kristallogr. New Cryst. Struct. 226, 121–122.
- Zhang, W., Chen, Y., Lei, T., Li, Y. & Li, W. (2011). Acta Cryst. E67, m569– m570.
- Zhu, R.-Q. (2012). Acta Cryst. E68, m389.

supporting information

Acta Cryst. (2013). E69, m303-m304 [doi:10.1107/S1600536813011951]

Poly[1*H*-imidazol-3-ium [di-µ-nitrato-sodium]]

Chahrazed Trifa, Amira Bouhali, Sofiane Bouacida, Chaouki Boudaren and Thierry Bataille

S1. Comment

Knowledge of the detailed coordination behavior of imidazoles and their limitation in the possible use in complexes with specific catalytic activity is of great current importance. Imidazole, namely 1,3-diazacyclopenta-2,4-diene and its derivatives have found wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal–organic frameworks (Huang *et al.* 2011; Huang *et al.* 2008). Recently, several complexes based on the imidazolium cation were reported (Gao *et al.* 2009; Zhang *et al.* 2011; Zhu 2012; Han *et al.* 2007; Wenyan *et al.* 2011). This paper describes the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound (I) (Fig. 1) contains one Na¹ ion, one protonated imidazole molecule and two coordinated nitrate anions. The Na centre is coordinated by eight O atoms from three bidentate nitrate anions and two O atoms from two monodentate nitrate anions, displaying a bicapped trigonal-prismatic geometry (Fig. 2). The Na—O bond distances range from 2.4321 (16) to 2.6239 (17) Å. The C—N distances lie in the range 1.328 (2)- 1.376 (2) A°. The imidazolium cation is essentially planar giving an r.m.s. deviation for all non-H atoms of 0.0018 A°, with a maximum deviation from the mean plane of -0.0028 (1)Å for the C4 atom. The crystal packing can be described by alterning two-dimensional polymecric layers and double layers of imidazolium ions. A two-dimensional layer structure is thus constructed parallel to (010) (Fig. 3). Weak hydrogen bonds are formed between imidazolium cation and the nitrate O atoms of adjacent layers (Fig. 3) further connect the two-dimensional layers into a three-dimensional network. In addition, $\pi \cdots \pi$ contacts between the imidazolium rings, [centroid-centroid distance = 3.588 (3) Å with *ca* 1.382 Å slippage] are also observed.

S2. Experimental

All chemicals used (reagent grade) were commercially available. The compound was obtained by using hydrothermal method in Teflon-lined autoclave. The mixture of barium nitrate, imidazole, sodium hydroxide and deionized water in the molar ratio 1:1:3:264 was stirred for half an hour, and transferred in a Teflon-lined autoclave, then treated at 423 K for 4 d. After the mixture was slowly cooled to room temperature, colorless needles suitable for X-ray diffraction analysis were collected from the final reaction system by filtration, washed several times with distilled water and dried in air at ambient temperature.

S3. Refinement

Approximate positions for all the H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined with the riding-model approximation. The applied constraints were as follow: C_{aryl} — $H_{aryl} = 0.95$ Å; N_{aryl} — $H_{aryl} = 0.88$ Å and $U_{iso}(H_{aryl}) = 1.2 U_{eq}(C_{aryl})$.

Figure 1

The asymetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.

The coordination of the unieque Na^{I} ion.

Figure 3

A partial packing diagram of (I), showing alterning layers with hydrogen bond shown as dashed lines.

Poly[1H-imidazol-3-ium [di-µ-nitrato-sodium]]

Crystal data

 $(C_{3}H_{5}N_{2})[Na(NO_{3})_{2}]$ $M_{r} = 216.1$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 3.5875 (3) Å b = 24.8548 (17) Å c = 8.819 (6) Å $\beta = 95.546$ (4)° V = 782.7 (5) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: Enraf Nonius FR590 Graphite monochromator Detector resolution: 9 pixels mm⁻¹ CCD rotation images, thin slices scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{min} = 0.884, T_{max} = 0.972$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.084$ S = 1.101778 reflections F(000) = 440 $D_x = 1.834 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 7048 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 150 KStick, colourless $0.52 \times 0.15 \times 0.13 \text{ mm}$

9892 measured reflections 1778 independent reflections 1541 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 4.0^{\circ}$ $h = -4 \rightarrow 4$ $k = -32 \rightarrow 32$ $l = -11 \rightarrow 11$

127 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2 + 0.6068P]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
-	$\Delta ho_{ m max} = 0.19$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Na1	0.51191 (18)	0.19828 (2)	1.30182 (7)	0.02160 (17)
O21	0.9994 (3)	0.13952 (4)	1.42898 (13)	0.0229 (3)
N22	0.8825 (4)	0.09735 (5)	1.35908 (15)	0.0179 (3)
O23	0.6569 (3)	0.10118 (5)	1.24273 (13)	0.0236 (3)
O22	0.9921 (3)	0.05206 (4)	1.40834 (13)	0.0243 (3)
O12	0.0537 (3)	0.18850 (4)	1.08164 (13)	0.0221 (3)
N1	0.1514 (4)	0.22797 (5)	1.00369 (15)	0.0172 (3)
O11	0.3871 (3)	0.26060 (4)	1.06212 (13)	0.0228 (3)
O13	0.0153 (3)	0.23312 (5)	0.86783 (13)	0.0234 (3)
C4	0.5075 (5)	0.12044 (6)	0.74003 (19)	0.0223 (3)
H4	0.4512	0.1537	0.6896	0.027*
N3	0.6807 (4)	0.11445 (5)	0.87906 (16)	0.0208 (3)
H3	0.7619	0.1408	0.9403	0.025*
C2	0.7128 (5)	0.06034 (6)	0.91212 (19)	0.0212 (3)
H2	0.8252	0.0449	1.0039	0.025*
C1	0.5545 (4)	0.03354 (6)	0.78945 (18)	0.0207 (3)
H1	0.5348	-0.0044	0.778	0.025*
N5	0.4268 (4)	0.07172 (5)	0.68401 (15)	0.0203 (3)
Н5	0.3101	0.065	0.5936	0.024*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0229 (3)	0.0196 (3)	0.0211 (3)	0.0029 (2)	-0.0037 (3)	-0.0020 (2)
O21	0.0284 (6)	0.0159 (5)	0.0235 (6)	-0.0015 (5)	-0.0022 (5)	-0.0039 (4)
N22	0.0200 (6)	0.0169 (6)	0.0169 (7)	-0.0007 (5)	0.0019 (5)	-0.0006 (5)
O23	0.0273 (6)	0.0246 (6)	0.0178 (6)	-0.0012 (5)	-0.0046 (5)	0.0006 (4)
O22	0.0313 (7)	0.0153 (5)	0.0251 (6)	0.0018 (5)	-0.0033 (5)	0.0009 (4)
O12	0.0297 (6)	0.0169 (5)	0.0188 (6)	-0.0040 (4)	-0.0019 (5)	0.0045 (4)
N1	0.0194 (6)	0.0157 (6)	0.0165 (7)	0.0024 (5)	0.0020 (5)	-0.0005 (5)
O11	0.0225 (6)	0.0192 (5)	0.0263 (6)	-0.0052 (4)	0.0001 (5)	-0.0025 (5)

Acta Cryst. (2013). E69, m303-m304

supporting information

O13	0.0309 (6)	0.0239 (6)	0.0144 (6)	0.0022 (5)	-0.0024 (5)	0.0022 (4)
C4	0.0246 (8)	0.0206 (7)	0.0219 (8)	0.0004 (6)	0.0035 (6)	0.0015 (6)
N3	0.0221 (7)	0.0190 (6)	0.0214 (7)	-0.0022 (5)	0.0023 (5)	-0.0045 (5)
C2	0.0222 (8)	0.0205 (8)	0.0210 (8)	0.0012 (6)	0.0022 (6)	0.0010 (6)
C1	0.0207 (8)	0.0195 (7)	0.0219 (8)	-0.0003 (6)	0.0025 (6)	-0.0012 (6)
N5	0.0202 (7)	0.0242 (7)	0.0161 (7)	-0.0009(5)	0.0003 (5)	-0.0025 (5)

Geometric parameters (Å, °)

Na1—O12	2.4321 (16)	O12—Na1 ⁱⁱⁱ	2.8874 (17)
Na1—O21	2.4639 (14)	N1011	1.2467 (17)
Na1—O13 ⁱ	2.5106 (13)	N1—O13	1.2560 (19)
Na1—O23	2.5338 (13)	N1—Na1 ^v	2.9406 (16)
Na1—O13 ⁱⁱ	2.5730 (14)	O11—Na1 ^v	2.5910 (19)
Na1—O11 ⁱⁱ	2.5910 (19)	O13—Na1 ^{vi}	2.5106 (13)
Nal—O11	2.6239 (17)	O13—Na1 ^v	2.5730 (14)
Na1—O21 ⁱⁱⁱ	2.6776 (14)	C4—N3	1.328 (2)
Na1—O12 ^{iv}	2.8874 (17)	C4—N5	1.329 (2)
Na1—N1	2.911 (2)	C4—H4	0.95
Na1—N1 ⁱⁱ	2.9406 (16)	N3—C2	1.379 (2)
Na1—Na1 ⁱⁱⁱ	3.5875 (3)	N3—H3	0.88
O21—N22	1.2668 (17)	C2—C1	1.348 (2)
O21—Na1 ^{iv}	2.6776 (14)	C2—H2	0.95
N22—O23	1.2475 (19)	C1—N5	1.376 (2)
N22—O22	1.2558 (17)	C1—H1	0.95
O12—N1	1.2666 (17)	N5—H5	0.88
O12—Na1—O21	134.38 (5)	N1—Na1—N1 ⁱⁱ	101.88 (5)
O12—Na1—O13 ⁱ	131.96 (5)	O12—Na1—Na1 ⁱⁱⁱ	53.22 (4)
O21—Na1—O13 ⁱ	80.44 (4)	O21—Na1—Na1 ⁱⁱⁱ	131.75 (3)
O12—Na1—O23	82.93 (4)	O13 ⁱ —Na1—Na1 ⁱⁱⁱ	134.17 (3)
O21—Na1—O23	51.55 (4)	O23—Na1—Na1 ⁱⁱⁱ	103.01 (3)
O13 ⁱ —Na1—O23	122.49 (5)	O13 ⁱⁱ —Na1—Na1 ⁱⁱⁱ	44.41 (3)
O12—Na1—O13 ⁱⁱ	79.49 (5)	O11 ⁱⁱ —Na1—Na1 ⁱⁱⁱ	75.02 (3)
O21—Na1—O13 ⁱⁱ	140.03 (5)	O11—Na1—Na1 ⁱⁱⁱ	84.68 (3)
O13 ⁱ —Na1—O13 ⁱⁱ	89.76 (4)	O21 ⁱⁱⁱ —Na1—Na1 ⁱⁱⁱ	43.36 (3)
O23—Na1—O13 ⁱⁱ	146.94 (5)	O12 ^{iv} —Na1—Na1 ⁱⁱⁱ	137.57 (3)
O12—Na1—O11 ⁱⁱ	125.84 (5)	N1—Na1—Na1 ⁱⁱⁱ	69.08 (3)
O21—Na1—O11 ⁱⁱ	90.37 (5)	N1 ⁱⁱ —Na1—Na1 ⁱⁱⁱ	60.11 (3)
O13 ⁱ —Na1—O11 ⁱⁱ	73.07 (4)	N22—O21—Na1	94.69 (9)
O23—Na1—O11 ⁱⁱ	127.91 (4)	N22—O21—Na1 ^{iv}	117.13 (10)
O13 ⁱⁱ —Na1—O11 ⁱⁱ	49.87 (4)	Na1—O21—Na1 ^{iv}	88.39 (4)
O12—Na1—O11	50.67 (4)	O23—N22—O22	120.63 (13)
O21—Na1—O11	140.80 (5)	O23—N22—O21	119.68 (13)
O13 ⁱ —Na1—O11	81.31 (4)	O22—N22—O21	119.69 (13)
O23—Na1—O11	114.77 (5)	N22—O23—Na1	91.91 (9)
O13 ⁱⁱ —Na1—O11	73.93 (5)	N1	98.90 (9)
O11 ⁱⁱ —Na1—O11	116.76 (4)	N1—O12—Na1 ⁱⁱⁱ	122.64 (9)

O12—Na1—O21 ⁱⁱⁱ	80.87 (5)	Na1—O12—Na1 ⁱⁱⁱ	84.35 (5)
O21—Na1—O21 ⁱⁱⁱ	88.39 (4)	011—N1—013	120.90 (13)
O13 ⁱ —Na1—O21 ⁱⁱⁱ	141.34 (5)	011—N1—012	119.46 (13)
O23—Na1—O21 ⁱⁱⁱ	74.30 (4)	O13—N1—O12	119.62 (13)
O13 ⁱⁱ —Na1—O21 ⁱⁱⁱ	75.42 (4)	O11—N1—Na1	64.35 (8)
O11 ⁱⁱ —Na1—O21 ⁱⁱⁱ	70.10 (4)	O13—N1—Na1	170.21 (10)
O11—Na1—O21 ⁱⁱⁱ	126.07 (4)	O12—N1—Na1	55.64 (7)
O12—Na1—O12 ^{iv}	84.35 (5)	O11—N1—Na1 ^v	61.59 (8)
O21—Na1—O12 ^{iv}	76.22 (5)	O13—N1—Na1 ^v	60.79 (8)
O13 ⁱ —Na1—O12 ^{iv}	72.38 (4)	O12—N1—Na1 ^v	166.49 (10)
O23—Na1—O12 ^{iv}	67.45 (4)	Na1—N1—Na1 ^v	121.45 (5)
O13 ⁱⁱ —Na1—O12 ^{iv}	137.21 (4)	N1—O11—Na1 ^v	93.37 (9)
O11 ⁱⁱ —Na1—O12 ^{iv}	144.51 (4)	N1—O11—Na1	90.29 (9)
O11—Na1—O12 ^{iv}	65.26 (5)	Na1 ^v —O11—Na1	156.34 (6)
O21 ⁱⁱⁱ —Na1—O12 ^{iv}	140.33 (4)	N1—O13—Na1 ^{vi}	119.68 (9)
O12—Na1—N1	25.46 (4)	N1—O13—Na1 ^v	93.99 (9)
021—Na1—N1	142.68 (4)	Na1 ^{vi} —O13—Na1 ^v	89.76 (4)
$O13^{i}$ Na1 N1	106.51 (4)	N3—C4—N5	107.85 (14)
023—Na1—N1	97.92 (4)	N3—C4—H4	126.1
O13 ⁱⁱ —Na1—N1	77.26 (5)	N5—C4—H4	126.1
O11 ⁱⁱ —Na1—N1	126.91 (5)	C4—N3—C2	109.07 (14)
O11—Na1—N1	25.36 (4)	C4—N3—H3	125.5
O21 ⁱⁱⁱ —Na1—N1	104.68 (5)	C2—N3—H3	125.5
O12 ^{iv} —Na1—N1	71.53 (5)	C1—C2—N3	106.99 (15)
O12—Na1—N1 ⁱⁱ	104.05 (5)	C1—C2—H2	126.5
O21—Na1—N1 ⁱⁱ	115.36 (5)	N3—C2—H2	126.5
O13 ⁱ —Na1—N1 ⁱⁱ	77.58 (4)	C2	106.76 (14)
O23—Na1—N1 ⁱⁱ	146.03 (5)	C2—C1—H1	126.6
O13 ⁱⁱ —Na1—N1 ⁱⁱ	25.22 (4)	N5—C1—H1	126.6
O11 ⁱⁱ —Na1—N1 ⁱⁱ	25.04 (4)	C4—N5—C1	109.33 (14)
O11—Na1—N1 ⁱⁱ	93.96 (5)	C4—N5—H5	125.3
O21 ⁱⁱⁱ —Na1—N1 ⁱⁱ	74.13 (4)	C1—N5—H5	125.3
O12 ^{iv} —Na1—N1 ⁱⁱ	145.46 (4)		
O12—Na1—O21—N22	-12.65 (12)	O21—Na1—N1—O11	-102.52 (10)
O13 ⁱ —Na1—O21—N22	-154.26 (9)	O13 ⁱ —Na1—N1—O11	-6.60 (9)
O23—Na1—O21—N22	-8.23 (8)	O23—Na1—N1—O11	-133.96 (9)
O13 ⁱⁱ —Na1—O21—N22	127.71 (9)	O13 ⁱⁱ —Na1—N1—O11	79.31 (8)
O11 ⁱⁱ —Na1—O21—N22	132.99 (9)	O11 ⁱⁱ —Na1—N1—O11	74.35 (7)
O11—Na1—O21—N22	-90.93 (11)	O21 ⁱⁱⁱ —Na1—N1—O11	150.27 (8)
O21 ⁱⁱⁱ —Na1—O21—N22	62.90 (10)	O12 ^{iv} —Na1—N1—O11	-71.01 (8)
O12 ^{iv} —Na1—O21—N22	-80.21 (9)	N1 ⁱⁱ —Na1—N1—O11	73.79 (10)
N1—Na1—O21—N22	-49.51 (12)	Na1 ⁱⁱⁱ —Na1—N1—O11	125.07 (8)
N1 ⁱⁱ —Na1—O21—N22	134.48 (8)	O21—Na1—N1—O12	85.90 (11)
Na1 ⁱⁱⁱ —Na1—O21—N22	62.90 (10)	O13 ⁱ —Na1—N1—O12	-178.18 (9)
O12—Na1—O21—Na1 ^{iv}	104.45 (7)	O23—Na1—N1—O12	54.46 (9)
O13 ⁱ —Na1—O21—Na1 ^{iv}	-37.16 (4)	O13 ⁱⁱ —Na1—N1—O12	-92.27 (9)
O23—Na1—O21—Na1 ^{iv}	108.86 (6)	O11 ⁱⁱ —Na1—N1—O12	-97.23 (10)

O13 ⁱⁱ —Na1—O21—Na1 ^{iv}	-115.19 (7)	O11—Na1—N1—O12	-171.58 (14)
O11 ⁱⁱ —Na1—O21—Na1 ^{iv}	-109.92 (4)	O21 ⁱⁱⁱ —Na1—N1—O12	-21.31 (9)
O11—Na1—O21—Na1 ^{iv}	26.17 (8)	O12 ^{iv} —Na1—N1—O12	117.41 (10)
O21 ⁱⁱⁱ —Na1—O21—Na1 ^{iv}	180	N1 ⁱⁱ —Na1—N1—O12	-97.78 (8)
O12 ^{iv} —Na1—O21—Na1 ^{iv}	36.89 (4)	Na1 ⁱⁱⁱ —Na1—N1—O12	-46.51 (8)
N1—Na1—O21—Na1 ^{iv}	67.58 (8)	O12—Na1—N1—Na1 ^v	-164.26 (12)
N1 ⁱⁱ —Na1—O21—Na1 ^{iv}	-108.43 (5)	O21—Na1—N1—Na1 ^v	-78.36 (8)
Na1 ⁱⁱⁱ —Na1—O21—Na1 ^{iv}	180	O13 ⁱ —Na1—N1—Na1 ^v	17.56 (7)
Na1—O21—N22—O23	15.20 (14)	O23—Na1—N1—Na1 ^v	-109.81(5)
Na1 ^{iv} —O21—N22—O23	-75.40 (16)	O13 ⁱⁱ —Na1—N1—Na1 ^v	103.46 (6)
Na1—O21—N22—O22	-164.17(12)	011 ⁱⁱ —Na1—N1—Na1 ^v	98.51 (7)
$Na1^{iv} - O21 - N22 - O22$	105.23 (14)	011—Na1—N1—Na1 ^v	24.16(7)
022 - N22 - 023 - Na1	164.63 (12)	$O21^{iii}$ Na1 N1 Na1 ^v	174.43 (5)
021 - N22 - 023 - Na1	-14.73(14)	012^{iv} Na1 N1 Na1 ^v	-46.85(5)
012—Na1— 023 —N22	-174.84(9)	$N1^{ii}$ Na1 N1 Na1 ^v	97.95 (7)
021—Na1— 023 —N22	8 34 (8)	$Na1^{iii}$ $Na1$ $Na1$ $Na1^{v}$	149 23 (5)
013^{i} Na1 023 N22	49 13 (10)	013 — $N1$ — 011 — $Na1^{v}$	$-14\ 00\ (14)$
013^{ii} Na1 023^{ii} N22	-11669(11)	012 — $N1$ — 011 — $Na1^{v}$	164.60(12)
011^{ii} Na1 023 N22	-44 21 (11)	$Na1 - N1 - O11 - Na1^{\vee}$	156.62 (6)
011 - Na1 - 023 - N22	144 67 (9)	013— $N1$ — 011 — $Na1$	-170.61(12)
021^{iii} Na1 023 N22	-92.38(10)	012 - N1 - 011 - Na1	7 98 (13)
012^{iv} Na1 023 N22	98 36 (10)	$Na1^v N1 - O11 - Na1$	-156 62 (6)
$N_1 = N_{21} = 0.23 = N_{22}$	164 52 (9)	012—Na1—011—N1	-4.67(8)
$N1^{ii}$ Na1 Q23 N22	-70.14(13)	012 Na1 011 N1	110.55(10)
$N_1 = N_{a1} = 0.25 = 1.22$ Na1 ⁱⁱⁱ = Na1 = 0.23 = N22	-12523(8)	013^{i} Na1-011-N1	173 60 (9)
$021 \text{ N}_{21} 012 \text{ N}_{1}$	-122.22(0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51.74(9)
013^{i} Na1 012 N1	2 35 (12)	013^{ii} Na1 011 N1	-94.12(9)
013 - 1012 - 101 023 - 1012 - 101	-125.70(0)	O_{11}^{ii} No1 O11 N1	-12042(7)
O_{23} No1 O_{12} N1	123.70(9)	$O_{11} = Na_1 = O_{11} = N_1$	-3640(10)
013 - 1012 - 1012	101 01 (10)	$O12^{iv}$ Na1 O11 N1	30.40(10)
011 - Na1 - 012 - N1	101.91 (10)	N1 $N1$ $N1$ $N1$ $N1$	-100.62(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.03(8)	$N_1 - Na_1 - O_{11} - N_1$	-109.02(10) -50.16(8)
$O_2 I^{\text{in}}$ Na1 $O_1 2$ N1	57.70 (0)	$Na1^{}Na1^{}O11^{}N1$	-30.10(8)
N1 $N1$ $N1$ $O12$ $N1$	-37.79(9)	O_{12} Na1 O_{11} Na1	-103.77(14)
NI ^{III} —NaI—OI2—NI	88.10(7)	O_{21} Na1 O_{11} Na1	11.44(17)
Na1 - Na1 - O12 - N1	122.21 (9)	O13 Na1 $O11$ Na1 V	/4.50 (12)
O_{21} Na1 O_{12} Na1 \cdots	113.37(0)	O_{23} Na1 O_{11} Na1	-47.37(14)
O13 - Na1 - O12 - Na1 - O12 - O12 - O13 - O12 - O13	-119.86(5)	Olli Nal Oll Naly	100.77(13)
023—Na1— 012 —Na1 […]	112.09 (4)		140.47 (11)
$O13^{\text{IIII}}$ Na1 $O12$ Na1 ^{IIII}	-39.79 (4)	O_{21}^{m} Na1 O_{11}^{m} Na1 $^{\text{v}}$	-135.51(12)
O11 Na1 $O12$ Na1	-20.30(6)	NI NI OII NI	-0.03(12)
OII—NaI— $OI2$ —NaI ^{III}	-11/.56(5)	NI-Nal-OII-Nal	-99.10(15)
$O_2 I^{\text{m}} - NaI - O_1 2 - NaI^{\text{m}}$	36.93 (4)	NI ^{III} —NaI—OII—NaI ^V	151.28 (12)
$V12^{\circ}$ Na1	100	$Na1 - Na1 - U11 - Na1^{\vee}$	-149.26 (12)
$NI - NaI - UI2 - NaI^{m}$	-122.21(9)	O12 NI $O13$ Na ^{11}	-//.90(15)
NI"—NaI—UI2—NaI"	-34.05(4)	$V12$ — $N1$ — $V13$ — $Na1^{v1}$	103.51 (13)
Na1—012—N1—011	-8.72(14)	$Na1^{v} - N1 - O13 - Na1^{v_{1}}$	-92.00 (8)
Na1 —O12—N1—O11	80.25 (15)	$OII - NI - OI3 - Nal^{\vee}$	14.11 (14)
Na1—O12—N1—O13	169.89 (11)	012—N1—O13—Na1 ^v	-164.48 (12)

supporting information

Na1 ⁱⁱⁱ —O12—N1—O13	-101.14 (14)	N5—C4—N3—C2	0.31 (19)
Na1 ⁱⁱⁱ —O12—N1—Na1	88.97 (9)	C4—N3—C2—C1	0.00 (19)
Na1—O12—N1—Na1 ^v	82.0 (4)	N3—C2—C1—N5	-0.30 (18)
Na1 ⁱⁱⁱ —O12—N1—Na1 ^v	170.9 (4)	N3—C4—N5—C1	-0.50 (19)
O12—Na1—N1—O11	171.58 (14)	C2-C1-N5-C4	0.50 (18)

Symmetry codes: (i) *x*+1, -*y*+1/2, *z*+1/2; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) *x*-1, *y*, *z*; (iv) *x*+1, *y*, *z*; (v) *x*, -*y*+1/2, *z*-1/2; (vi) *x*-1, -*y*+1/2, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С1—Н1…О23 ^{vii}	0.95	2.50	3.438 (3)	168
C4—H4···O11 ^v	0.95	2.41	3.355 (3)	173

Symmetry codes: (v) x, -y+1/2, z-1/2; (vii) -x+1, -y, -z+2.