Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-Allyl-2-aminopyridin-1-ium bromide

T. Seethalakshmi, ${ }^{\text {a }}$ P. Venkatesan, ${ }^{\text {b }}$ M. Nallu, ${ }^{\text {b }}$ Daniel E. Lynch ${ }^{\text {c }}$ and S. Thamotharan ${ }^{\text {d* }}$

${ }^{\text {a }}$ Department of Physics, Government Arts College (Autonomous), Karur 639 005, India, ${ }^{\mathbf{b}}$ School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, ${ }^{\mathbf{c}}$ Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, England, and ${ }^{\mathbf{d}}$ Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India
Correspondence e-mail: thamu@scbt.sastra.edu

Received 29 April 2013; accepted 7 May 2013

Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.023 ; w R$ factor $=0.053$; data-to-parameter ratio $=18.5$.

In the cation of the title salt, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$, the dihedral angle between the planes of the pyridinium ring and the allyl group is $79.4(3)^{\circ}$. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds link the cations and anions, forming chains of alternating $R_{2}^{1}(7)$ and $R_{4}^{2}(8)$ rings, which run parallel to the c axis direction. The crystal studied was an inversion twin with components in a 0.753 (12):0.247 (12) ratio.

Related literature

For related structures, see: Seethalakshmi et al. (2006a,b,c, 2007, 2013). For the biolgical activity of alkyl-pyridinium salts, see: Sundararaman et al. (2013); Ilangovan et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-} & V=894.32(4) \AA^{3} \\
M_{r}=215.10 & Z=4 \\
\text { Orthorhombic, Pna2 } & \text { Mo } K \alpha \text { radiation } \\
a=7.8205(2) \AA & \mu=4.53 \mathrm{~mm}^{-1} \\
b=13.3560(3) \AA & T=120 \mathrm{~K} \\
c=8.5621(2) \AA & 0.30 \times 0.14 \times 0.03 \mathrm{~mm} \\
& \\
\text { Data collection } & \\
\text { Bruker-Nonius 95mm CCD camera } & 14540 \text { measured reflecti } \\
\quad \text { on } \kappa \text {-goniostat diffractometer } & 2033 \text { independent reflec } \\
\text { Absorption correction: multi-scan } & 1960 \text { reflections with } I= \\
\quad(S A D A B S ; \text { Sheldrick, 2003) } & R_{\mathrm{int}}=0.058
\end{array}
$$

$T_{\text {min }}=0.343, T_{\text {max }}=0.876$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.053 \quad$ independent and constrained
$S=1.06$
2033 reflections
110 parameters
3 restraints refinement
$\Delta \rho_{\text {max }}=0.43 \mathrm{e}^{-3}$
$\Delta \rho_{\text {max }}=0.43 \mathrm{e}_{\text {min }}=-0.35$
Absolute structure: Flack (1983), 945 Friedel pairs
Flack parameter: 0.247 (12)

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Br}^{\mathrm{i}}$	$0.84(2)$	$2.61(2)$	$3.412(2)$	$160(4)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{Br}^{\text {ii }}$	$0.85(2)$	$2.51(2)$	$3.357(2)$	$175(3)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{Br}^{\mathrm{iii}}$	0.99	2.91	$3.668(3)$	134
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{Br}^{\mathrm{i}}$	0.99	2.84	$3.810(3)$	167
Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z ;\left(\right.$ ii) $-x+\frac{1}{2}, y+\frac{1}{2}, z-\frac{1}{2} ;$ (iii) $-x+\frac{1}{2}, y+\frac{1}{2}, z+\frac{1}{2}$.				

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (University of Southampton, UK) for the X-ray data collection and Professor P. Kaliannan for his help. ST thanks the management of SASTRA University for their encouragement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5611).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Ilangovan, A., Venkatesan, P., Sundararaman, M. \& Rejesh Kumar, R. (2012). Med. Chem. Res. 21, 694-702.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Seethalakshmi, T., Kaliannan, P., Venkatesan, P., Fronczek, F. R. \& Thamotharan, S. (2006a). Acta Cryst. E62, o2353-o2355.
Seethalakshmi, T., Manivannan, S., Dhanuskodi, S., Lynch, D. E. \& Thamotharan, S. (2013). Acta Cryst. E69, o835-o836.
Seethalakshmi, T., Manivannan, S., Lynch, D. E., Dhanuskodi, S. \& Kaliannan, P. (2007). Acta Cryst. E63, o599-o601.

Seethalakshmi, T., Venkatesan, P., Fronczek, F. R., Kaliannan, P. \& Thamotharan, S. (2006b). Acta Cryst. E62, o2560-o2562.
Seethalakshmi, T., Venkatesan, P., Fronczek, F. R., Kaliannan, P. \& Thamotharan, S. (2006c). Acta Cryst. E62, o3389-o3390.
Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Sundararaman, M., Rajesh Kumar, R., Venkatesan, P. \& Ilangovan, A. (2013). J. Med. Microbiol. 62, 241-248.

supporting information

Acta Cryst. (2013). E69, o884 [doi:10.1107/S1600536813012452]

1-Allyl-2-aminopyridin-1-ium bromide

T. Seethalakshmi, P. Venkatesan, M. Nallu, Daniel E. Lynch and S. Thamotharan

S1. Comment

As part of our studies on pyridinum salts (Seethalakshmi et al., 2006a,b,c, 2007, 2013), we report herein the crystal structure of the title compound, (I). The asymmetric unit of (I) is shown in Fig. 1. The dihedral angle between the planes of the pyridinium ring and allyl group ($\mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8$) is $79.4(3)^{\circ}$. The corresponding bond lengths and angles of the cation in (I) are comparable with those of related structures reported earlier (Seethalakshmi et al., 2006a,b,c, 2007, 2013).

In the crystal (Fig. 2) the amino group acts as a donor for two different bromide anions (Table 1). These intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds link the cations via bromide anions into one-dimensional chains which run parallel to the c axis. In addition, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions are observed between C 6 (via H 6 A and H 6 B) and two bromide anions. The $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Br} 1^{\mathrm{i}}$ and $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{Br} 1^{\mathrm{i}}$ interactions combine to generate a $R^{1}{ }_{2}(7)$ ring (Bernstein et al., 1995) and two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and two $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions combine to form a $R^{2}{ }_{4}(8)$ ring motif. These two ring motifs are arranged alternately and run parallel to the c axis (Fig. 3).

S2. Experimental

A solution of 2-aminopyridine $(1.175 \mathrm{~g}, 25 \mathrm{ml})$ and allyl bromide $(1.51 \mathrm{~g}, 25 \mathrm{ml})$ in dry acetone $(15 \mathrm{ml})$ was stirred for 44 h at room temperature (303 K). The solid that separated was filtered, washed with dry acetone and dried in vacuum to give the stable salt, which was recrystallized from an aqueous ethanol ($80 \% \mathrm{v} / \mathrm{v}$) solution (m.p. 419-421 K, yield 63\%).

S3. Refinement

The positions of amino H atoms were determined from a difference Fourier map and refined freely along with their isotropic displacement parameters. In the final round of refinement, the $\mathrm{N}-\mathrm{H}$ bond lengths of amino group were restrained to $0.86(2) \AA$. The remaining H atoms were placed in geometrically idealized positions ($\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$), with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and were constrained to ride on their parent atoms. The crystal used is an inversion twin with components in the ratio 0.753 (12):0.247 (12)

Figure 1
Molecular structure of (I), showing ellipsoids at the 50% probability level.

Figure 2
Part of the crystal structure of (I) viewed along the a axis. The hydrogen bonds are indicated as dashed lines.

Figure 3
Arrangement of alternate $R^{1}{ }_{2}(7)$ and $R^{2}{ }_{4}(10)$ ring motifs in a one-dimensional chain.

1-Allyl-2-aminopyridin-1-ium bromide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=215.10$
Orthorhombic, Pna_{1}
Hall symbol: P 2c - 2 n
$a=7.8205$ (2) \AA
$b=13.3560(3) \AA$
$c=8.5621$ (2) \AA
$V=894.32(4) \AA^{3}$
$Z=4$
$F(000)=432$
$D_{\mathrm{x}}=1.598 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1211 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=4.53 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Plate, colourless
$0.30 \times 0.14 \times 0.03 \mathrm{~mm}$

Data collection

Bruker-Nonius 95 mm CCD camera on κ goniostat
diffractometer
Radiation source: Bruker-Nonius FR591
rotating anode
Graphite monochromator
Detector resolution: 9.091 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
$T_{\text {min }}=0.343, T_{\text {max }}=0.876$
14540 measured reflections
2033 independent reflections
1960 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-17 \rightarrow 17$
$l=-10 \rightarrow 11$
(SADABS; Sheldrick, 2003)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.053$
$S=1.06$
2033 reflections
110 parameters
3 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0198 P)^{2}+0.704 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.43 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.35$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0051 (7)
Absolute structure: Flack (1983), 945 Friedel pairs
Absolute structure parameter: 0.247 (12)

Special details

Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.611792 .

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Br1	$0.03564(3)$	$0.120651(14)$	$0.72785(7)$	$0.01951(9)$
C1	$0.2522(4)$	$0.6591(2)$	$0.6626(3)$	$0.0171(6)$
C2	$0.2481(4)$	$0.75344(18)$	$0.5884(3)$	$0.0223(5)$
H2	0.2826	0.7598	0.4825	0.027^{*}
C3	$0.1942(4)$	$0.8354(2)$	$0.6696(4)$	$0.0238(6)$
H3	0.1909	0.8989	0.6198	0.029^{*}
C4	$0.1434(4)$	$0.8267(2)$	$0.8268(4)$	$0.0227(6)$
H4	0.1071	0.8837	0.8841	0.027^{*}
C5	$0.1474(4)$	$0.7353(2)$	$0.8941(3)$	$0.0210(5)$

H5	0.1121	0.7285	0.9997	0.025^{*}
C6	$0.1943(3)$	$0.55284(19)$	$0.8940(3)$	$0.0195(5)$
H6A	0.1970	0.5632	1.0085	0.023^{*}
H6B	0.2962	0.5131	0.8647	0.023^{*}
C7	$0.0363(3)$	$0.4961(2)$	$0.8511(3)$	$0.0221(6)$
H7	-0.0714	0.5267	0.8704	0.026^{*}
C8	$0.0379(4)$	$0.4061(2)$	$0.7883(4)$	$0.0264(6)$
H8A	0.1437	0.3737	0.7678	0.032^{*}
H8B	-0.0666	0.3736	0.7635	0.032^{*}
N1	$0.2010(3)$	$0.65157(19)$	$0.8142(3)$	$0.0174(5)$
N2	$0.3083(3)$	$0.57779(17)$	$0.5869(2)$	$0.0208(5)$
H2A	$0.339(5)$	$0.524(2)$	$0.630(4)$	$0.049(11)^{*}$
H2B	$0.341(5)$	$0.588(3)$	$0.494(3)$	$0.040(10)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.02238(13)$	$0.02017(12)$	$0.01599(12)$	$-0.00267(8)$	$-0.00157(17)$	$0.00066(16)$
C 1	$0.0158(12)$	$0.0185(14)$	$0.0168(12)$	$-0.0021(11)$	$-0.0001(10)$	$-0.0016(10)$
C 2	$0.0245(13)$	$0.0228(14)$	$0.0196(13)$	$-0.0015(11)$	$0.0013(11)$	$0.0045(10)$
C 3	$0.0259(15)$	$0.0163(13)$	$0.0293(15)$	$0.0019(12)$	$-0.0013(11)$	$0.0036(10)$
C 4	$0.0223(14)$	$0.0220(14)$	$0.0238(15)$	$0.0013(11)$	$0.0000(11)$	$-0.0053(11)$
C 5	$0.0225(14)$	$0.0230(14)$	$0.0176(12)$	$0.0010(11)$	$-0.0009(11)$	$-0.0037(10)$
C 6	$0.0255(13)$	$0.0198(12)$	$0.0131(11)$	$0.0014(10)$	$0.0020(10)$	$0.0024(9)$
C7	$0.0196(13)$	$0.0238(14)$	$0.0228(14)$	$-0.0012(10)$	$0.0014(10)$	$0.0097(11)$
C8	$0.0240(14)$	$0.0286(14)$	$0.0265(13)$	$-0.0040(11)$	$-0.0018(10)$	$0.0051(12)$
N1	$0.0211(12)$	$0.0169(11)$	$0.0141(11)$	$-0.0002(10)$	$0.0004(10)$	$-0.0004(9)$
N2	$0.0265(12)$	$0.0215(12)$	$0.0144(11)$	$0.0023(9)$	$0.0006(9)$	$0.0014(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 2$	$1.339(4)$	$\mathrm{C} 6-\mathrm{N} 1$	$1.486(3)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.361(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.496(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.412(4)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9900
$\mathrm{C} 2-\mathrm{C} 3$	$1.364(4)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	$\mathrm{C} 7-\mathrm{C} 8$	$1.317(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.408(4)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9500
$\mathrm{C} 3-\mathrm{H} 3$	0.9500	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.350(4)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9500
$\mathrm{C} 4-\mathrm{H} 4$	0.9500	$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~A}$	$0.844(18)$
$\mathrm{C} 5-\mathrm{N} 1$	$1.376(4)$	$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$0.849(19)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9500	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	
		$\mathrm{~N} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.3
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{N} 1$	$119.9(3)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.3
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{C} 2$	$120.9(3)$	$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.3
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$119.2(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	108.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.6(3)$		$123.7(3)$

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.2	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	118.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.5(3)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	118.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.7	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	120.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.7	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	120.0
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$118.4(3)$	$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	120.0
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.8	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$120.2(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.8	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6$	$120.9(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$122.0(3)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6$	$118.8(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.0	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$125(3)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5$	119.0	$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	$115(3)$
$\mathrm{N} 1-\mathrm{H} 2-\mathrm{C} 7$		$118(4)$	
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	$111.5(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	
	109.3	$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6$	$-0.5(4)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.4(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6$	$-4.5(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$176.6(3)$		
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.4(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 6$	$0.0(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.2(4)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 1$	$-177.2(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 5$	$-79.8(3)$	
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$0.8(4)$	$122.7(3)$	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{Br} 1^{\mathrm{i}}$	$0.84(2)$	$2.61(2)$	$3.412(2)$	$160(4)$
$\mathrm{N} 2 — \mathrm{H} 2 B \cdots \mathrm{Br} 1^{\mathrm{ii}}$	$0.85(2)$	$2.51(2)$	$3.357(2)$	$175(3)$
$\mathrm{C} 6 — \mathrm{H} 6 A \cdots \mathrm{Br} 1^{\mathrm{iii}}$	0.99	2.91	$3.668(3)$	134
$\mathrm{C} 6 — \mathrm{H} 6 B \cdots \mathrm{Br}^{\mathrm{i}}$	0.99	2.84	$3.810(3)$	167

Symmetry codes: (i) $x+1 / 2,-y+1 / 2, z$; (ii) $-x+1 / 2, y+1 / 2, z-1 / 2$; (iii) $-x+1 / 2, y+1 / 2, z+1 / 2$.

