organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o924-o925

3,4-Bis[1-(prop-2-yn­yl)-1H-indol-3-yl]-1H-pyrrole-2,5-dione

aSchool of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: mhhuang@bit.edu.cn

(Received 30 April 2013; accepted 10 May 2013; online 18 May 2013)

In the title mol­ecule, C26H17N3O2, both indole ring systems are essentially planar, with maximum deviations of 0.019 (2) and 0.033 (1) Å for the N atoms, and form dihedral angles of 34.40 (9) and 45.06 (8)° with the essentially planar pyrrole ring [maximum deviation = 0.020 (2) Å]. The dihedral angle between the two indole ring systems is 58.78 (6)°. In the crystal, mol­ecules are connected by pairs of N—H⋯O hydrogen bonds, forming inversion dimers and generating R22(8) rings. Weak ππ stacking inter­actions, with a centroid–centroid distance of 3.983 (2) Å, are also observed.

Related literature

For the importance of bis­indolylmale­imides in medicinal chemistry, see: Bulbule et al. (2008[Bulbule, V. J., Rivas, K., Verlinde, C. L. M. J., Van Voorhis, W. C. & Gelb, M. H. (2008). J. Med. Chem. 51, 384-387.]); Wang et al. (2012[Wang, K., Yan, Z., Wang, N. & Liu, Z. Z. (2012). Chin. Chem. Lett. 23, 462-465.]) and in materials science, see: Chiu et al. (2003[Chiu, C.-W., Chow, T.-J., Chuen, C.-H., Lin, H.-M. & Tao, Y.-T. (2003). Chem. Mater. 15, 4527-4532.]); Kaletas et al. (2005[Kaletas, B. K., Kozhevnikov, V. N., Zimine, M., Williams, R. M., Koenig, B. & De Cola, L. (2005). Eur. J. Org. Chem. pp. 3443-3449.]); Lin et al. (2010[Lin, Z., Lin, Y.-D., Wu, C.-Y., Chow, P.-T., Sun, C.-H. & Chow, T. J. (2010). Macromolecules, 43, 5925-5931.]); Nakazono et al. (2007[Nakazono, M., Nanbu, S., Uesaki, A., Kuwano, R., Kashiwabara, M. & Zaitsu, K. (2007). Org. Lett. 9, 3583-3586.]); Yeh et al. (2006[Yeh, T.-S., Chow, T. J., Tsai, S.-H., Chiu, C.-W. & Zhao, C.-X. (2006). Chem. Mater. 18, 832-839.]). For the isolation of bis­indolylmale­imides from natural products, see: Kamata et al. (2006[Kamata, K., Suetsugu, T., Yamamoto, Y., Hayashi, M., Komiyama, K. & Ishibashi, M. (2006). J. Nat. Prod. 69, 1252-1254.]). For the synthesis of bis­indol­yl­mal­e­­i­mides, see: Prateeptongkum et al. (2010[Prateeptongkum, S., Driller, K. M., Jackstell, R., Spannenberg, A. & Beller, M. (2010). Chem. Eur. J. 16, 9606-9615.]). For a related crystal structure, see: Huang et al. (2012[Huang, L., Li, Y., Gao, D. & Du, Z. (2012). Acta Cryst. E68, o1328.]). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H17N3O2

  • Mr = 403.43

  • Triclinic, [P \overline 1]

  • a = 8.8015 (14) Å

  • b = 11.2619 (14) Å

  • c = 11.838 (3) Å

  • α = 62.860 (17)°

  • β = 73.625 (16)°

  • γ = 79.593 (12)°

  • V = 999.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 102 K

  • 0.11 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.991, Tmax = 0.994

  • 6379 measured reflections

  • 3920 independent reflections

  • 3113 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.114

  • S = 1.03

  • 3920 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.01 2.872 (2) 165
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Bisindolylmaleimides are important in medicinal chemistry (Bulbule et al., 2008; Wang et al., 2012) and in the field of materials science (Chiu et al., 2003; Kaletas et al., 2005; Lin et al., 2010; Nakazono et al., 2007; Yeh et al., 2006). Bisindolylmaleimides have been isolated from natural products (Kamata et al., 2006). The synthesis of bisindolylmaleimides (Prateeptongkum et al., 2010) and an example of a related crystal structure (Huang et al., 2012) have been reported.

The molecular structure of the title compound is shown in Fig. 1. Both indole ring systems are essentially planar with maximum deviations of 0.019 (2)Å for N3 and 0.033 (1)Å for N2 and these ring systems form dihedral angles of 34.40 (9)Å [N3/C16-C23] and 45.06 (8)Å [N2/C5-C12] with the essentially planar pyrrole ring [N1/C1-C4] (maximum deviation 0.020 (2)Å for C1). The dihedral angle between the two indole ring systems is 58.78 (6)°. In the crystal, molecules are connected by pairs of N—H···O hydrogen bonds to form inversion dimers (Fig. 2) generating R22(8) rings (Bernstein et al., 1995). Weak ππ stacking interactions, with a Cg···Cg(2-x, 1-y, -z) distance of 3.983 (2)Å, are also observed [Cg is the centroid of the C18-C23 ring].

Related literature top

For the importance of bisindolylmaleimides in medicinal chemistry, see: Bulbule et al. (2008); Wang et al. (2012) and in materials science, see: Chiu et al. (2003); Kaletas et al. (2005); Lin et al. (2010); Nakazono et al. (2007); Yeh et al. (2006). For the isolation of bisindolylmaleimides from natural products, see: Kamata et al. (2006). For the synthesis of bisindolylmaleimides, see: Prateeptongkum et al. (2010). For a related crystal structure, see: Huang et al. (2012). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by N-alkylation of 3, 4-di(1H-indol-3-yl)-1H-pyrrole-2,5-dione by propargyl bromide with the aid of NaH freshly distilled THF under N2 atmosphere. The reaction was initiated at 273K for 5 h. The reaction was quenched with sat. NH4Cl at 273K, extracted with EtOAc, dried over anhydrous Na2SO4 and concentrated in vacuo. The residue was purified by f.c.c.(silica gel, eluted with 14% EtOAc in Petroleum Ether) to give the title compound in a yield of 83%, which provided the sample suitable for X-ray analysis after natural evaporation of solvents.

Refinement top

All H atoms were palced in calculated positions with C—H = 0.95Å (aromatic and acetylene hydrogens), 0.99Å (methylene) and N—H = 0.88 Å. They were refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing viewed approximately along the a axis. The dashed lines indicate N—H···O hydrogen bonds.
3,4-Bis[1-(prop-2-ynyl)-1H-indol-3-yl]-1H-pyrrole-2,5-dione top
Crystal data top
C26H17N3O2V = 999.9 (3) Å3
Mr = 403.43Z = 2
Triclinic, P1F(000) = 420
Hall symbol: -P 1Dx = 1.340 Mg m3
a = 8.8015 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2619 (14) Åθ = 1.5–51.8°
c = 11.838 (3) ŵ = 0.09 mm1
α = 62.860 (17)°T = 102 K
β = 73.625 (16)°Block, colorless
γ = 79.593 (12)°0.11 × 0.10 × 0.07 mm
Data collection top
Bruker SMART CCD
diffractometer
3920 independent reflections
Radiation source: fine-focus sealed tube3113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 26.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 109
Tmin = 0.991, Tmax = 0.994k = 1313
6379 measured reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.3377P]
where P = (Fo2 + 2Fc2)/3
3920 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C26H17N3O2γ = 79.593 (12)°
Mr = 403.43V = 999.9 (3) Å3
Triclinic, P1Z = 2
a = 8.8015 (14) ÅMo Kα radiation
b = 11.2619 (14) ŵ = 0.09 mm1
c = 11.838 (3) ÅT = 102 K
α = 62.860 (17)°0.11 × 0.10 × 0.07 mm
β = 73.625 (16)°
Data collection top
Bruker SMART CCD
diffractometer
3920 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3113 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 0.994Rint = 0.024
6379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
3920 reflectionsΔρmin = 0.23 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.33248 (15)0.75325 (12)0.29355 (12)0.0242 (3)
O10.11940 (15)0.34749 (12)0.48806 (13)0.0248 (3)
C120.7380 (2)0.27334 (17)0.39074 (16)0.0203 (4)
H120.72780.35310.40170.024*
C200.8983 (2)0.62081 (19)0.09736 (18)0.0259 (4)
H200.97900.68190.15020.031*
C190.7956 (2)0.62914 (17)0.01340 (17)0.0200 (4)
N20.48798 (18)0.09433 (14)0.33954 (14)0.0202 (3)
C180.6728 (2)0.54223 (17)0.09277 (17)0.0185 (4)
C230.6555 (2)0.44154 (18)0.05835 (18)0.0239 (4)
H230.57410.38070.10930.029*
N30.79109 (19)0.71857 (15)0.06452 (15)0.0253 (4)
C170.5904 (2)0.58517 (17)0.19368 (17)0.0205 (4)
C70.6120 (2)0.23464 (17)0.36673 (16)0.0180 (4)
C90.7717 (2)0.03492 (18)0.35768 (18)0.0245 (4)
H90.78340.04430.34560.029*
C140.5187 (2)0.04567 (18)0.15627 (19)0.0250 (4)
C160.6670 (2)0.69296 (18)0.17015 (19)0.0260 (4)
H160.63750.74270.22060.031*
C130.4647 (2)0.00393 (18)0.29867 (18)0.0247 (4)
H13A0.35080.02180.32550.030*
H13B0.52490.08890.34180.030*
C80.6308 (2)0.11411 (17)0.35377 (16)0.0194 (4)
C40.3246 (2)0.63429 (17)0.32913 (17)0.0201 (4)
C220.7586 (2)0.4323 (2)0.05068 (19)0.0287 (5)
H220.74750.36430.07370.034*
C110.8770 (2)0.19342 (19)0.39814 (17)0.0250 (4)
H110.96240.21790.41580.030*
C50.3823 (2)0.19972 (17)0.34038 (17)0.0201 (4)
H50.27630.20980.33120.024*
N10.19290 (18)0.56262 (14)0.41135 (15)0.0228 (4)
H10.10590.59570.44840.027*
C100.8942 (2)0.07670 (19)0.37999 (18)0.0271 (4)
H100.99230.02510.38310.033*
C20.3827 (2)0.41642 (17)0.35429 (17)0.0178 (4)
C150.5634 (3)0.09309 (19)0.0417 (2)0.0320 (5)
H150.59930.13130.05050.038*
C60.4527 (2)0.28858 (17)0.35655 (16)0.0181 (4)
C30.4463 (2)0.53771 (17)0.29249 (17)0.0189 (4)
C210.8777 (2)0.5207 (2)0.12664 (18)0.0291 (5)
H210.94660.51180.20060.035*
C250.9581 (2)0.83373 (18)0.1088 (2)0.0277 (5)
C10.2178 (2)0.43211 (17)0.42665 (17)0.0198 (4)
C240.8937 (3)0.8296 (2)0.0096 (2)0.0328 (5)
H24A0.83220.91480.03060.039*
H24B0.98220.82040.05980.039*
C261.0093 (3)0.83789 (19)0.1887 (2)0.0344 (5)
H261.05060.84130.25310.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0229 (8)0.0190 (7)0.0286 (7)0.0038 (5)0.0003 (6)0.0108 (6)
O10.0188 (7)0.0217 (7)0.0301 (7)0.0056 (5)0.0049 (6)0.0124 (6)
C120.0228 (10)0.0222 (9)0.0144 (8)0.0046 (7)0.0031 (7)0.0062 (8)
C200.0177 (10)0.0301 (11)0.0183 (9)0.0005 (8)0.0007 (8)0.0027 (9)
C190.0159 (10)0.0201 (9)0.0194 (9)0.0026 (7)0.0061 (7)0.0046 (8)
N20.0214 (9)0.0190 (8)0.0198 (8)0.0028 (6)0.0025 (6)0.0088 (7)
C180.0136 (9)0.0201 (9)0.0162 (9)0.0001 (7)0.0044 (7)0.0029 (8)
C230.0204 (10)0.0291 (10)0.0203 (9)0.0001 (8)0.0058 (8)0.0088 (8)
N30.0210 (9)0.0246 (9)0.0238 (8)0.0074 (6)0.0013 (7)0.0065 (7)
C170.0157 (10)0.0184 (9)0.0221 (9)0.0007 (7)0.0010 (7)0.0064 (8)
C70.0184 (10)0.0197 (9)0.0114 (8)0.0020 (7)0.0003 (7)0.0043 (7)
C90.0269 (11)0.0213 (10)0.0193 (9)0.0018 (8)0.0027 (8)0.0063 (8)
C140.0304 (11)0.0198 (10)0.0279 (11)0.0038 (8)0.0065 (9)0.0120 (9)
C160.0244 (11)0.0236 (10)0.0263 (10)0.0048 (8)0.0023 (8)0.0110 (9)
C130.0310 (12)0.0204 (10)0.0247 (10)0.0053 (8)0.0044 (9)0.0110 (8)
C80.0213 (10)0.0196 (9)0.0138 (8)0.0031 (7)0.0021 (7)0.0045 (7)
C40.0183 (10)0.0212 (10)0.0195 (9)0.0049 (7)0.0012 (7)0.0082 (8)
C220.0279 (12)0.0329 (11)0.0241 (10)0.0027 (8)0.0087 (9)0.0112 (9)
C110.0198 (10)0.0327 (11)0.0170 (9)0.0050 (8)0.0048 (8)0.0043 (8)
C50.0166 (10)0.0211 (9)0.0187 (9)0.0035 (7)0.0005 (7)0.0070 (8)
N10.0174 (8)0.0203 (8)0.0274 (8)0.0028 (6)0.0058 (7)0.0133 (7)
C100.0211 (11)0.0293 (11)0.0211 (10)0.0048 (8)0.0042 (8)0.0052 (9)
C20.0149 (9)0.0219 (9)0.0171 (9)0.0024 (7)0.0017 (7)0.0093 (8)
C150.0466 (14)0.0262 (11)0.0252 (11)0.0083 (9)0.0066 (10)0.0114 (9)
C60.0178 (10)0.0188 (9)0.0147 (8)0.0031 (7)0.0013 (7)0.0069 (7)
C30.0172 (10)0.0205 (9)0.0185 (9)0.0009 (7)0.0015 (7)0.0094 (8)
C210.0249 (11)0.0393 (12)0.0197 (10)0.0076 (9)0.0048 (8)0.0135 (9)
C250.0206 (11)0.0220 (10)0.0340 (11)0.0060 (8)0.0004 (9)0.0088 (9)
C10.0190 (10)0.0199 (9)0.0201 (9)0.0036 (7)0.0004 (8)0.0099 (8)
C240.0291 (12)0.0299 (11)0.0305 (11)0.0137 (9)0.0008 (9)0.0055 (9)
C260.0323 (13)0.0262 (11)0.0406 (13)0.0017 (9)0.0068 (10)0.0118 (10)
Geometric parameters (Å, º) top
O2—C41.216 (2)C14—C151.180 (3)
O1—C11.224 (2)C14—C131.471 (3)
C12—C111.380 (3)C16—H160.9500
C12—C71.402 (2)C13—H13A0.9900
C12—H120.9500C13—H13B0.9900
C20—C211.375 (3)C4—N11.388 (2)
C20—C191.399 (3)C4—C31.506 (2)
C20—H200.9500C22—C211.388 (3)
C19—N31.382 (2)C22—H220.9500
C19—C181.407 (2)C11—C101.402 (3)
N2—C51.371 (2)C11—H110.9500
N2—C81.383 (2)C5—C61.374 (2)
N2—C131.459 (2)C5—H50.9500
C18—C231.412 (3)N1—C11.380 (2)
C18—C171.449 (3)N1—H10.8800
C23—C221.389 (3)C10—H100.9500
C23—H230.9500C2—C31.359 (2)
N3—C161.362 (2)C2—C61.451 (2)
N3—C241.462 (2)C2—C11.489 (2)
C17—C161.374 (2)C15—H150.9500
C17—C31.449 (2)C21—H210.9500
C7—C81.410 (2)C25—C261.178 (3)
C7—C61.439 (2)C25—C241.463 (3)
C9—C101.382 (3)C24—H24A0.9900
C9—C81.390 (3)C24—H24B0.9900
C9—H90.9500C26—H260.9500
C11—C12—C7118.76 (17)O2—C4—N1124.49 (17)
C11—C12—H12120.6O2—C4—C3128.73 (16)
C7—C12—H12120.6N1—C4—C3106.75 (14)
C21—C20—C19117.34 (18)C21—C22—C23121.13 (19)
C21—C20—H20121.3C21—C22—H22119.4
C19—C20—H20121.3C23—C22—H22119.4
N3—C19—C20129.06 (17)C12—C11—C10121.12 (18)
N3—C19—C18107.88 (16)C12—C11—H11119.4
C20—C19—C18123.06 (17)C10—C11—H11119.4
C5—N2—C8109.07 (14)N2—C5—C6109.78 (16)
C5—N2—C13124.26 (16)N2—C5—H5125.1
C8—N2—C13125.14 (15)C6—C5—H5125.1
C19—C18—C23117.57 (16)C1—N1—C4110.35 (15)
C19—C18—C17106.66 (15)C1—N1—H1124.8
C23—C18—C17135.75 (17)C4—N1—H1124.8
C22—C23—C18119.34 (18)C9—C10—C11121.56 (18)
C22—C23—H23120.3C9—C10—H10119.2
C18—C23—H23120.3C11—C10—H10119.2
C16—N3—C19108.84 (15)C3—C2—C6129.71 (17)
C16—N3—C24124.81 (16)C3—C2—C1108.11 (15)
C19—N3—C24126.19 (16)C6—C2—C1122.18 (15)
C16—C17—C18106.03 (16)C14—C15—H15180.0
C16—C17—C3124.76 (17)C5—C6—C7106.70 (15)
C18—C17—C3128.89 (16)C5—C6—C2126.26 (17)
C12—C7—C8118.80 (17)C7—C6—C2126.90 (15)
C12—C7—C6134.27 (16)C2—C3—C17131.66 (16)
C8—C7—C6106.86 (15)C2—C3—C4107.35 (15)
C10—C9—C8116.94 (17)C17—C3—C4120.44 (15)
C10—C9—H9121.5C20—C21—C22121.54 (19)
C8—C9—H9121.5C20—C21—H21119.2
C15—C14—C13175.8 (2)C22—C21—H21119.2
N3—C16—C17110.56 (17)C26—C25—C24179.5 (2)
N3—C16—H16124.7O1—C1—N1125.03 (17)
C17—C16—H16124.7O1—C1—C2127.66 (16)
N2—C13—C14110.29 (15)N1—C1—C2107.30 (14)
N2—C13—H13A109.6N3—C24—C25111.76 (16)
C14—C13—H13A109.6N3—C24—H24A109.3
N2—C13—H13B109.6C25—C24—H24A109.3
C14—C13—H13B109.6N3—C24—H24B109.3
H13A—C13—H13B108.1C25—C24—H24B109.3
N2—C8—C9129.68 (17)H24A—C24—H24B107.9
N2—C8—C7107.57 (16)C25—C26—H26180.0
C9—C8—C7122.74 (17)
C21—C20—C19—N3179.63 (18)C13—N2—C5—C6167.15 (15)
C21—C20—C19—C181.3 (3)O2—C4—N1—C1176.33 (18)
N3—C19—C18—C23179.89 (15)C3—C4—N1—C11.9 (2)
C20—C19—C18—C230.8 (3)C8—C9—C10—C110.1 (3)
N3—C19—C18—C171.25 (19)C12—C11—C10—C91.8 (3)
C20—C19—C18—C17178.03 (16)N2—C5—C6—C70.17 (19)
C19—C18—C23—C220.0 (3)N2—C5—C6—C2175.86 (16)
C17—C18—C23—C22178.43 (19)C12—C7—C6—C5175.92 (18)
C20—C19—N3—C16177.35 (18)C8—C7—C6—C50.94 (19)
C18—C19—N3—C161.9 (2)C12—C7—C6—C28.1 (3)
C20—C19—N3—C241.8 (3)C8—C7—C6—C2175.05 (16)
C18—C19—N3—C24177.39 (17)C3—C2—C6—C5134.3 (2)
C19—C18—C17—C160.2 (2)C1—C2—C6—C546.1 (3)
C23—C18—C17—C16178.7 (2)C3—C2—C6—C740.9 (3)
C19—C18—C17—C3173.55 (18)C1—C2—C6—C7138.68 (18)
C23—C18—C17—C35.0 (3)C6—C2—C3—C1711.6 (3)
C11—C12—C7—C81.3 (2)C1—C2—C3—C17168.76 (19)
C11—C12—C7—C6177.89 (18)C6—C2—C3—C4177.07 (17)
C19—N3—C16—C171.8 (2)C1—C2—C3—C42.5 (2)
C24—N3—C16—C17177.39 (17)C16—C17—C3—C2157.5 (2)
C18—C17—C16—N31.0 (2)C18—C17—C3—C229.8 (3)
C3—C17—C16—N3175.05 (17)C16—C17—C3—C432.1 (3)
C5—N2—C13—C1484.9 (2)C18—C17—C3—C4140.54 (18)
C8—N2—C13—C1479.4 (2)O2—C4—C3—C2178.66 (18)
C5—N2—C8—C9179.60 (18)N1—C4—C3—C20.5 (2)
C13—N2—C8—C913.3 (3)O2—C4—C3—C176.2 (3)
C5—N2—C8—C71.29 (19)N1—C4—C3—C17171.94 (16)
C13—N2—C8—C7167.59 (15)C19—C20—C21—C220.9 (3)
C10—C9—C8—N2176.65 (17)C23—C22—C21—C200.1 (3)
C10—C9—C8—C72.4 (3)C4—N1—C1—O1175.96 (18)
C12—C7—C8—N2176.07 (15)C4—N1—C1—C23.4 (2)
C6—C7—C8—N21.36 (19)C3—C2—C1—O1175.62 (18)
C12—C7—C8—C93.1 (3)C6—C2—C1—O14.7 (3)
C6—C7—C8—C9179.45 (16)C3—C2—C1—N13.8 (2)
C18—C23—C22—C210.3 (3)C6—C2—C1—N1175.90 (16)
C7—C12—C11—C101.1 (3)C16—N3—C24—C2552.3 (3)
C8—N2—C5—C60.7 (2)C19—N3—C24—C25132.89 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.012.872 (2)165
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H17N3O2
Mr403.43
Crystal system, space groupTriclinic, P1
Temperature (K)102
a, b, c (Å)8.8015 (14), 11.2619 (14), 11.838 (3)
α, β, γ (°)62.860 (17), 73.625 (16), 79.593 (12)
V3)999.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.11 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.991, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
6379, 3920, 3113
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.114, 1.03
No. of reflections3920
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.012.872 (2)165.4
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors wish to thank the Natural Science Foundation of China (No. 21202008) for generous support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBulbule, V. J., Rivas, K., Verlinde, C. L. M. J., Van Voorhis, W. C. & Gelb, M. H. (2008). J. Med. Chem. 51, 384–387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChiu, C.-W., Chow, T.-J., Chuen, C.-H., Lin, H.-M. & Tao, Y.-T. (2003). Chem. Mater. 15, 4527–4532.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, L., Li, Y., Gao, D. & Du, Z. (2012). Acta Cryst. E68, o1328.  CSD CrossRef IUCr Journals Google Scholar
First citationKaletas, B. K., Kozhevnikov, V. N., Zimine, M., Williams, R. M., Koenig, B. & De Cola, L. (2005). Eur. J. Org. Chem. pp. 3443–3449.  Google Scholar
First citationKamata, K., Suetsugu, T., Yamamoto, Y., Hayashi, M., Komiyama, K. & Ishibashi, M. (2006). J. Nat. Prod. 69, 1252–1254.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, Z., Lin, Y.-D., Wu, C.-Y., Chow, P.-T., Sun, C.-H. & Chow, T. J. (2010). Macromolecules, 43, 5925–5931.  Web of Science CrossRef CAS Google Scholar
First citationNakazono, M., Nanbu, S., Uesaki, A., Kuwano, R., Kashiwabara, M. & Zaitsu, K. (2007). Org. Lett. 9, 3583–3586.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrateeptongkum, S., Driller, K. M., Jackstell, R., Spannenberg, A. & Beller, M. (2010). Chem. Eur. J. 16, 9606–9615.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, K., Yan, Z., Wang, N. & Liu, Z. Z. (2012). Chin. Chem. Lett. 23, 462–465.  Web of Science CrossRef CAS Google Scholar
First citationYeh, T.-S., Chow, T. J., Tsai, S.-H., Chiu, C.-W. & Zhao, C.-X. (2006). Chem. Mater. 18, 832–839.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 6| June 2013| Pages o924-o925
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds