organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-3-(3,4-Difluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one

He-Ping Zhu, Peng-Tian Yu, Zhe Wang, Sheng-Li Yang and Zhi-Guo Liu*

School of Pharmaceutical Sciences, Wenzhou Medical College, Wenzhou 325035, People's Republic of China Correspondence e-mail: lzgcnu@163.com

Received 9 April 2013; accepted 18 May 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.043; wR factor = 0.129; data-to-parameter ratio = 14.3.

In the title compound, $C_{17}H_{14}F_2O_3$, the dihedral angle between the benzene rings is 20.56 (8)° and the H atoms at the central propenone group are *trans* configured. One of the F atoms is disordered over two positions (occupancy ratio 0.57:0.43) and was refined using a split model. In the crystal, the molecules are linked into centrosymmetrical dimers and are further connected into a three-dimensional network *via* weak C-H···O interactions.

Related literature

For related structures, see: Peng *et al.* (2010); Wu *et al.* (2010, 2011, 2012*b*). For background to and applications of chalcones, see: Boumendjel *et al.* (2008); Kumar *et al.* (2011); Wu *et al.* (2011, 2012*a*); Zhang *et al.* (2011).

Experimental

Crystal data

 $\begin{array}{l} C_{17}H_{14}F_2O_3\\ M_r = 304.28\\ \text{Monoclinic, } P2_1/n\\ a = 8.7444 \ (9) \ \text{\AA}\\ b = 8.4832 \ (9) \ \text{\AA}\\ c = 19.829 \ (2) \ \text{\AA}\\ \beta = 94.053 \ (2)^\circ \end{array}$

V = 1467.2 (3) Å ³	
Z = 4	
Mo Ka radiation	
$\mu = 0.11 \text{ mm}^{-1}$	
T = 293 K	
$0.21 \times 0.15 \times 0.11$ mm	1

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.977, \ T_{\max} = 0.988$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	201 parameters
$vR(F^2) = 0.129$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
2876 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

8592 measured reflections

 $R_{\rm int} = 0.028$

2876 independent reflections

2121 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C1 - H1 \cdots O1^{i} \\ C5 - H5 \cdots O2^{ii} \\ C5 - H5 \cdots O3^{ii} \end{array}$	0.93 0.93 0.93	2.44 2.60 2.49	3.321 (2) 3.2769 (15) 3.3950 (15)	159 130 164

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by Xinmiao Talent Project of Zhejiang Province (ZHP). The X-ray crystallographic facility at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2310).

References

- Boumendjel, A., Boccard, J., Carrupt, P. A., Nicolle, E., Blanc, M., Geze, A., Choisnard, L., Wouessidjewe, D., Matera, E. L. & Dumontet, C. (2008). J. Med. Chem. 51, 2307–2310.
- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kumar, V., Kumar, S., Hassan, M., Wu, H., Thimmulappa, R. K., Kumar, A., Sharma, S. K., Parmar, V. S., Biswal, S. & Malhotra, S. V. (2011). *J. Med. Chem.* 54, 4147–4159.
- Peng, J., Xu, H., Li, Z., Zhang, Y. & Wu, J. (2010). Acta Cryst. E66, o1156– 01157.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Wu, X., Cai, X., Zheng, X., Zhang, Z. & Ye, X. (2010). *Acta Cryst.* E66, 03015. Wu, J. Z., Jiang, X., Zhao, C. G., Li, X. K. & Yang, S. L. (2012b). *Z. Kristallogr.*
- New Cryst. Struct. **227**, 215–216. Wu, J. Z., Li, J. L., Cai, Y. P., Pan, Y., Ye, F. Q., Zhang, Y. L., Zhao, Y. J., Yang,
- S. L., Li, X. K. & Liang, G. (2011). J. Med. Chem. 54, 8110–8123.
 Wu, J. Z., Wang, C., Cai, Y. P., Peng, J., Liang, D. L., Zhao, Y. J., Yang, S. L., Li, X. K., Wu, X. P. & Liang, G. (2012a). Med. Chem. Res. 21, 444–452.
- Zhang, H. J., Qian, Y., Zhu, D. D., Yang, X. G. & Zhu, H. L. (2011). Eur. J. Med. Chem. 46, 4702–4708.

supporting information

Acta Cryst. (2013). E69, o960 [doi:10.1107/S1600536813013767]

(E)-3-(3,4-Difluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one

He-Ping Zhu, Peng-Tian Yu, Zhe Wang, Sheng-Li Yang and Zhi-Guo Liu

S1. Comment

The title compound is a biologically active derivative of chalcone. Chalcones constitute an important group of natural products and some of them possess a wide range of biological activities including anti-inflammatory and anti-tumor (Boumendjel *et al.*, 2008; Kumar *et al.*, 2011; Zhang *et al.*, 2011). As part of our ongoing studies on chalcones (Wu *et al.*, 2012*a,b*; 2011), the title compound was synthesized and its crystal structure is reported here.

In the crystal structure, the dihedral angle between the mean planes of the difluorophenyl and the dimethoxyphenyl rings amount to 20.56 (8)°. The H atoms of the central propenone group are *trans* configurated. The two methoxy groups attached to C13 and C14 are almost coplanar with the benzene ring.

S2. Experimental

1-(3,4-difluorophenyl) ethanone (0.01 mol) and 2,3-dimethoxybenzaldehyde (0.01 mol) were dissolved in methanol (50 ml). Sodium hydroxide (5 ml, 20%) was added drop wised to the solution, which was stirred at ambient temperature. The content of the flask were poured into ice-cold water, and the resulting crude solid was collected by filtration. The compound was purified by flash column and single crystals were obtained by slow evaporation from an ethanol/ dichloromethane solution (1:2, v/v) at 293 K.

S3. Refinement

The hydrogen atoms were positioned with idalized geometry and refined isotropic with $U_{iso}(H) = 1.2 U_{eq}(C)$ (1.5 for methyl H atoms) using a riding model. One of the fluorine atoms was disordered over two positions and was refined using a split model with sof = 0.55 and 0.45.

Figure 1

Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level. Disordering is shown as full and open bonds.

(E)-3-(3,4-Difluorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one

Crystal data $C_{17}H_{14}F_2O_3$ F(000) = 632 $M_r = 304.28$ $D_{\rm x} = 1.377 {\rm Mg} {\rm m}^{-3}$ Monoclinic, $P2_1/n$ Mo *K* α radiation, $\lambda = 0.71073$ Å a = 8.7444 (9) Å Cell parameters from 2015 reflections b = 8.4832 (9) Å $\theta = 5.0-54.2^{\circ}$ c = 19.829(2) Å $\mu = 0.11 \text{ mm}^{-1}$ $\beta = 94.053 \ (2)^{\circ}$ T = 293 KV = 1467.2 (3) Å³ Prismatic, colorless Z = 4 $0.21 \times 0.15 \times 0.11$ mm Data collection Bruker SMART CCD area-detector 8592 measured reflections 2876 independent reflections diffractometer Radiation source: fine-focus sealed tube 2121 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.028$ $\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.6^\circ$ phi and ω scans $h = -10 \rightarrow 10$ Absorption correction: multi-scan (SADABS; Bruker, 2002) $k = -10 \rightarrow 10$

Refinement

 $T_{\rm min} = 0.977, T_{\rm max} = 0.988$

Refinement on F^2 site location: difference Fourier Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ cation: inferred from $wR(F^2) = 0.129$ neighbouring sites S = 1.04H-atom parameters constrained 2876 reflections 201 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

 $l = -24 \rightarrow 20$

 $w = 1/[\sigma^2(F_o^2) + (0.0703P)^2 + 0.091P]$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
F1	-0.0102 (2)	-0.0304 (3)	0.14625 (12)	0.0862 (7)	0.57
F1′	-0.1205 (3)	0.2840 (4)	-0.03983 (14)	0.0844 (9)	0.43
F2	-0.21164 (11)	0.07757 (14)	0.05038 (6)	0.0743 (4)	
01	0.67825 (13)	0.44604 (16)	0.07214 (6)	0.0643 (4)	
O2	1.05520 (12)	0.37085 (16)	0.35153 (5)	0.0569 (3)	
03	1.13490 (13)	0.49922 (18)	0.24315 (6)	0.0711 (4)	
C1	0.12377 (18)	0.3023 (2)	0.01589 (8)	0.0512 (4)	
H1	0.1536	0.3772	-0.0148	0.061*	
C2	-0.02383 (9)	0.24437 (11)	0.01024 (4)	0.0546 (4)	
H2	-0.0955	0.2809	-0.0253	0.065*	0.57
C3	-0.06758 (9)	0.13470 (11)	0.05544 (4)	0.0520 (4)	
C4	0.03440 (9)	0.08176 (11)	0.10642 (4)	0.0557 (4)	
H4′	0.0024	0.0047	0.1379	0.067*	0.43
C5	0.18143 (9)	0.13853 (11)	0.11244 (4)	0.0520 (4)	
Н5	0.2498	0.1023	0.1471	0.062*	
C6	0.22850 (16)	0.24987 (19)	0.06709 (8)	0.0431 (4)	
C7	0.38359 (17)	0.3175 (2)	0.07232 (8)	0.0457 (4)	
H7	0.4064	0.3889	0.0389	0.055*	
C8	0.49391 (17)	0.2877 (2)	0.11943 (8)	0.0505 (4)	
H8	0.4769	0.2139	0.1528	0.061*	
C9	0.64366 (17)	0.3684 (2)	0.12068 (8)	0.0474 (4)	
C10	0.74973 (16)	0.35850 (19)	0.18235 (8)	0.0441 (4)	
C11	0.71003 (19)	0.2904 (2)	0.24136 (9)	0.0588 (5)	
H11	0.6145	0.2429	0.2426	0.071*	
C12	0.80881 (19)	0.2909 (2)	0.29899 (9)	0.0587 (5)	
H12	0.7792	0.2439	0.3384	0.070*	
C13	0.95050(17)	0.36056 (19)	0.29820 (8)	0.0459 (4)	
C14	0.99356 (16)	0.42987 (19)	0.23785 (8)	0.0458 (4)	
C15	0.89489 (17)	0.42856 (18)	0.18126 (8)	0.0449 (4)	
H15	0.9242	0.4746	0.1416	0.054*	
C16	1.0133 (2)	0.3151 (3)	0.41527 (9)	0.0700 (6)	
H16A	0.9196	0.3648	0.4263	0.105*	
H16B	1.0931	0.3399	0.4494	0.105*	
H16C	0.9990	0.2030	0.4132	0.105*	
C17	1.1804 (2)	0.5882 (3)	0.18825 (10)	0.0762 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H17A	1.1838	0.5214	0.1493	0.114*
H17B	1.2802	0.6320	0.1993	0.114*
H17C	1.1083	0.6719	0.1786	0.114*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
F1	0.0593 (11)	0.0901 (16)	0.1083 (16)	-0.0182 (10)	0.0008 (10)	0.0475 (13)
F1′	0.0602 (14)	0.111 (2)	0.0770 (17)	-0.0076 (14)	-0.0306 (13)	0.0194 (16)
F2	0.0443 (5)	0.0795 (8)	0.0971 (9)	-0.0160 (5)	-0.0097 (5)	0.0008 (6)
01	0.0498 (7)	0.0841 (10)	0.0580 (7)	-0.0110 (6)	-0.0045 (6)	0.0218 (7)
O2	0.0488 (6)	0.0697 (8)	0.0502 (7)	-0.0076 (6)	-0.0095 (5)	-0.0012 (6)
03	0.0497 (7)	0.1028 (11)	0.0602 (8)	-0.0332 (7)	-0.0014 (6)	0.0012 (7)
C1	0.0492 (9)	0.0576 (11)	0.0454 (9)	-0.0017 (8)	-0.0057 (7)	0.0055 (8)
C2	0.0453 (9)	0.0650 (12)	0.0510 (10)	0.0007 (8)	-0.0140 (8)	0.0014 (8)
C3	0.0369 (8)	0.0538 (10)	0.0644 (10)	-0.0046 (7)	-0.0044 (7)	-0.0089 (8)
C4	0.0490 (9)	0.0506 (11)	0.0668 (11)	-0.0037 (8)	-0.0002 (8)	0.0092 (8)
C5	0.0431 (9)	0.0564 (11)	0.0550 (10)	0.0024 (8)	-0.0076 (7)	0.0088 (8)
C6	0.0403 (8)	0.0445 (9)	0.0436 (8)	0.0022 (7)	-0.0032 (6)	-0.0026 (7)
C7	0.0432 (8)	0.0498 (10)	0.0438 (9)	-0.0001 (7)	0.0007 (7)	-0.0001 (7)
C8	0.0420 (8)	0.0550 (10)	0.0534 (10)	-0.0056 (7)	-0.0052 (7)	0.0080 (8)
C9	0.0404 (8)	0.0498 (10)	0.0514 (9)	-0.0002 (7)	-0.0006 (7)	0.0047 (8)
C10	0.0381 (8)	0.0437 (9)	0.0498 (9)	-0.0031 (7)	-0.0014 (7)	0.0007 (7)
C11	0.0442 (9)	0.0694 (12)	0.0616 (11)	-0.0195 (8)	-0.0055 (8)	0.0140 (9)
C12	0.0544 (10)	0.0688 (12)	0.0515 (10)	-0.0157 (9)	-0.0053 (8)	0.0157 (8)
C13	0.0422 (8)	0.0449 (9)	0.0496 (9)	-0.0010 (7)	-0.0050 (7)	-0.0035 (7)
C14	0.0364 (8)	0.0472 (10)	0.0533 (9)	-0.0065 (7)	0.0005 (7)	-0.0070 (7)
C15	0.0430 (8)	0.0454 (9)	0.0465 (9)	-0.0033 (7)	0.0041 (7)	-0.0017 (7)
C16	0.0654 (11)	0.0901 (15)	0.0523 (11)	-0.0033 (10)	-0.0120 (9)	0.0085 (10)
C17	0.0639 (12)	0.0933 (16)	0.0735 (13)	-0.0337 (11)	0.0201 (10)	-0.0104 (11)

Geometric parameters (Å, °)

F1—C4	1.313 (2)	С7—Н7	0.9300	
F1′—C2	1.302 (2)	C8—C9	1.476 (2)	
F2—C3	1.3468 (12)	C8—H8	0.9300	
O1—C9	1.2220 (19)	C9—C10	1.484 (2)	
O2—C13	1.3516 (17)	C10-C11	1.371 (2)	
O2—C16	1.421 (2)	C10—C15	1.403 (2)	
O3—C14	1.3662 (18)	C11—C12	1.383 (2)	
O3—C17	1.405 (2)	C11—H11	0.9300	
C1—C2	1.3784 (18)	C12—C13	1.374 (2)	
C1—C6	1.391 (2)	C12—H12	0.9300	
C1—H1	0.9300	C13—C14	1.408 (2)	
С2—С3	1.3650	C14—C15	1.366 (2)	
С2—Н2	0.9600	C15—H15	0.9300	
С3—С4	1.3753	C16—H16A	0.9600	
C4—C5	1.3703	C16—H16B	0.9600	

C4—H4′	0.9600	C16—H16C	0.9600
C5—C6	1.3866 (18)	C17—H17A	0.9600
С5—Н5	0.9300	C17—H17B	0.9600
C6—C7	1.469 (2)	C17—H17C	0.9600
C7—C8	1.319 (2)		
C13—O2—C16	118.12 (13)	C8—C9—C10	119.32 (14)
C14—O3—C17	118.42 (14)	C11—C10—C15	118.39 (14)
C2—C1—C6	120.61 (15)	C11—C10—C9	123.07 (14)
C2—C1—H1	119.7	C15—C10—C9	118.47 (14)
C6—C1—H1	119.7	C10-C11-C12	121.53 (15)
F1′—C2—C3	118.67 (13)	C10-C11-H11	119.2
F1′—C2—C1	121.57 (16)	C12—C11—H11	119.2
C3—C2—C1	119.62 (8)	C13—C12—C11	120.20 (16)
С3—С2—Н2	120.2	C13—C12—H12	119.9
C1—C2—H2	120.2	C11—C12—H12	119.9
F2—C3—C2	120.03 (6)	O2—C13—C12	125.48 (15)
F2—C3—C4	119.45 (6)	02—C13—C14	115.52 (13)
$C_2 - C_3 - C_4$	120.5	C12-C13-C14	118.99 (14)
F1-C4-C5	121 27 (9)	03-C14-C15	125 60 (15)
F1 - C4 - C3	118 29 (9)	03-C14-C13	1120.00(10) 11415(13)
$C_{5}-C_{4}-C_{3}$	120.3	C_{15} C_{14} C_{13}	120.22(13)
$C_{5} - C_{4} - H_{4'}$	119.8	C_{14} C_{15} C_{10}	120.22 (15)
$C_3 - C_4 - H_4'$	119.8	C_{14} C_{15} H_{15}	110 7
C_{4}	120.17 (6)	C10-C15-H15	119.7
$C_{4} = C_{5} = C_{6}$	110.0	$O_2 C_{16} H_{16A}$	100.5
C6 C5 H5	110.0	$O_2 = C_{10} = H_{16R}$	109.5
C_{0}	119.9		109.5
$C_{5} = C_{6} = C_{7}$	110.73(13) 122.34(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{3} = C_{0} = C_{7}$	122.34(12) 118.80(14)		109.5
$C^{\circ} = C^{\circ} = C^{\circ}$	110.09(14) 126.80(15)	H16A - C16 - H16C	109.5
$C_{0} = C_{1} = C_{0}$	120.69 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C_{0}	110.0	$O_2 = C_1 T = H_1 T R$	109.5
$C_0 - C_1 - H_1$	110.0	U_{3} U_{1} U_{1	109.5
$C_{1} = C_{0} = C_{0}$	121.78 (13)	HI/A - CI/-HI/B	109.5
C = C = H	119.1	03-01 HI/C	109.5
C9—C8—H8	119.1	HI/A - CI/-HI/C	109.5
01_09_08	120.35 (14)	HI/B—CI/—HI/C	109.5
01-09-010	120.29 (14)		
	175 4 (2)	01 00 010 011	171 47 (10)
C_{0}	-1/5.4(2)		1/1.4/(18)
C_{6} C_{1} C_{2} C_{3} C_{3}	0.14 (19)		-6.5 (3)
F1' - C2 - C3 - F2	-4.45 (17)	01-09-010-015	-5.4 (2)
C1 - C2 - C3 - F2	1/9.90 (13)	C_{8} C_{9} C_{10} C_{15}	1/6.53 (15)
FT	1/5.63 (17)	C15—C10—C11—C12	0.5 (3)
C1—C2—C3—C4	-0.03 (9)	C9—C10—C11—C12	-176.42 (17)
F2-C3-C4-F1	3.98 (15)	C10—C11—C12—C13	0.0 (3)
C2—C3—C4—F1	-176.10 (14)	C16—O2—C13—C12	-4.5 (3)
F2—C3—C4—C5	-179.96 (7)	C16—O2—C13—C14	174.74 (16)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 175.92 (18) -0.02 (8) 0.13 (17) 178.41 (10) -0.2 (2) -178.53 (13) -2.0 (3) 176.24 (16) -177.52 (15) -11 8 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$178.70 (16) \\ -0.5 (3) \\ 5.4 (3) \\ -172.30 (16) \\ -0.9 (2) \\ 178.39 (16) \\ -178.80 (14) \\ 0.5 (2) \\ -177.60 (16) \\ 0.0 (2) \\ -0 5 (2) \\ $
C7-C8-C9-C10	-177.32 (13) -11.8 (3) 166.18 (16)	C11—C10—C15—C14 C9—C10—C15—C14 C9—C10—C15—C14	-0.5 (2) 176.55 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···O1 ⁱ	0.93	2.44	3.321 (2)	159
С5—Н5…О2 ^{іі}	0.93	2.60	3.2769 (15)	130
С5—Н5…О3 ^{іі}	0.93	2.49	3.3950 (15)	164

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+3/2, *y*-1/2, -*z*+1/2.