supplementary materials


ng5329 scheme

Acta Cryst. (2013). E69, o983    [ doi:10.1107/S1600536813014098 ]

2,2',5',6-Tetrachloro-4-[(1S)-1-methylpropoxy]biphenyl

H.-J. Lehmler, H. Wu and S. Parkin

Abstract top

In the title molecule, C16H14Cl4O, the dihedral angle between the least-square planes of the benzene rings is 84.40 (7)°. No unusual intermolecular interactions are present.

Comment top

The title compound was synthesized as an intermediate in ongoing efforts to synthesize atropisomerically pure hydroxylated polychlorinated biphenyls (PCBs) for metabolism and toxicological studies (Lehmler et al., 2010; Warner et al., 2009). The dihedral angle between the two phenyl rings of the title compound, an important determinant of the toxicity of PCBs, was 84.40 (7)°. Comparable solid state dihedral (82–83°) have been reported for structurally related PCB derivatives with three ortho chlorine substituents (Lehmler et al., 2005; Rissanen et al., 1988b). Slightly larger (84–87°) dihedral angles have been observed for PCB derivatives with four ortho chlorine substituents (Pedersen, 1975; Singh & McKinney, 1979). Smaller solid state dihedral angles have been reported for PCB derivatives with zero, one or two ortho chlorine substituents due to the smaller steric demand of multiple hydrogen substituents in ortho position (Mannila & Rissanen, 1994; Miao et al., 1996; Rissanen et al., 1988a; Shaikh et al., 2008; Singh et al., 1986; van der Sluis et al., 1990; Vyas et al., 2006).

Related literature top

For related literature about polychlorinated biphenyls, see: Lehmler et al. (2010); Warner et al. (2009). For crystal structures of PCB derivatives with two or less ortho chlorine substituents, see: Mannila & Rissanen (1994); Miao et al. (1996); Rissanen et al. (1988a); Shaikh et al. (2008); Singh et al. (1986); van der Sluis et al. (1990); Vyas et al. (2006). For crystal structures of PCB derivatives with three ortho chlorine substituents, see: Lehmler et al. (2005); Rissanen et al. (1988b). For crystal structures of PCB derivatives with four ortho chlorine substituents, see: Pedersen (1975); Singh & McKinney (1979). For literature about the Mitsunobu reaction, see: Fujita et al. (2001).

Experimental top

The title compound was synthesized by the Mitsunobu reaction of 2,2',5',6-tetrachloro-biphenyl-4-ol with (R)-isobutanol in THF (Fujita et al., 2001). Crystals suitable for crystal structure analysis were obtained by slowly evaporating a methanolic solution of the title compound.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (Csp2H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom. The absolute configuration was determined from 1625 Friedel pairs [Flack 'x' = 0.00 (6)].

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2,2',5',6-Tetrachloro-4-[(1S)-1-methylpropoxy]biphenyl top
Crystal data top
C16H14Cl4OF(000) = 744
Mr = 364.07Dx = 1.459 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2184 reflections
a = 10.3301 (2) Åθ = 1.0–27.5°
b = 10.5415 (2) ŵ = 0.71 mm1
c = 15.2160 (3) ÅT = 90 K
V = 1656.94 (6) Å3Plate, colourless
Z = 40.25 × 0.25 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3797 independent reflections
Radiation source: fine-focus sealed tube3351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9.1 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scans at fixed χ = 55°h = 1313
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1313
Tmin = 0.843, Tmax = 0.946l = 1919
22321 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.5301P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3797 reflectionsΔρmax = 0.30 e Å3
192 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 1625 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.00 (6)
Crystal data top
C16H14Cl4OV = 1656.94 (6) Å3
Mr = 364.07Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.3301 (2) ŵ = 0.71 mm1
b = 10.5415 (2) ÅT = 90 K
c = 15.2160 (3) Å0.25 × 0.25 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3797 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3351 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.946Rint = 0.053
22321 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.30 e Å3
S = 1.09Δρmin = 0.28 e Å3
3797 reflectionsAbsolute structure: Flack (1983), 1625 Friedel pairs
192 parametersFlack parameter: 0.00 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09110 (15)0.46820 (16)0.13102 (10)0.0267 (4)
Cl10.32228 (5)0.50012 (5)0.42961 (3)0.02188 (13)
Cl20.53731 (6)0.28777 (6)0.14184 (4)0.02615 (14)
Cl30.44229 (6)0.14044 (5)0.36487 (4)0.02755 (14)
Cl40.86539 (7)0.55656 (7)0.40389 (4)0.03806 (18)
C1'0.5425 (2)0.3734 (2)0.33248 (14)0.0207 (5)
C10.4219 (2)0.3999 (2)0.28166 (14)0.0188 (5)
C20.3142 (2)0.4581 (2)0.31899 (14)0.0185 (4)
C30.2007 (2)0.4834 (2)0.27365 (14)0.0206 (5)
H30.12960.52370.30180.025*
C40.1940 (2)0.4478 (2)0.18498 (15)0.0215 (5)
C50.2990 (2)0.3874 (2)0.14558 (15)0.0217 (5)
H50.29450.36250.08570.026*
C60.4089 (2)0.3641 (2)0.19355 (14)0.0194 (5)
C70.0337 (2)0.5044 (2)0.16686 (15)0.0243 (5)
H70.04530.46520.22620.029*
C80.1328 (2)0.4502 (2)0.10372 (16)0.0274 (5)
H8A0.11790.48710.04470.033*
H8B0.22030.47640.12320.033*
C90.1291 (3)0.3067 (3)0.0965 (2)0.0373 (7)
H9A0.04280.27970.07730.056*
H9B0.19380.27850.05360.056*
H9C0.14840.26910.15390.056*
C100.0439 (3)0.6479 (2)0.17430 (17)0.0325 (6)
H10A0.02900.68020.20890.049*
H10B0.12540.67030.20340.049*
H10C0.04190.68550.11540.049*
C2'0.5617 (2)0.2565 (2)0.37208 (15)0.0235 (5)
C3'0.6732 (3)0.2293 (2)0.41872 (16)0.0303 (6)
H3'0.68460.14800.44460.036*
C4'0.7682 (3)0.3210 (3)0.42750 (17)0.0315 (6)
H4'0.84540.30330.45920.038*
C5'0.7492 (2)0.4387 (3)0.38960 (15)0.0265 (5)
C6'0.6381 (2)0.4661 (2)0.34183 (15)0.0232 (5)
H6'0.62720.54720.31570.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0178 (8)0.0421 (11)0.0203 (8)0.0042 (7)0.0031 (7)0.0005 (8)
Cl10.0234 (3)0.0254 (3)0.0169 (2)0.0005 (2)0.0008 (2)0.0006 (2)
Cl20.0243 (3)0.0305 (3)0.0237 (3)0.0061 (2)0.0010 (2)0.0041 (2)
Cl30.0366 (3)0.0196 (3)0.0264 (3)0.0011 (2)0.0004 (3)0.0009 (2)
Cl40.0238 (3)0.0563 (4)0.0341 (3)0.0085 (3)0.0017 (3)0.0120 (3)
C1'0.0194 (12)0.0243 (11)0.0182 (10)0.0029 (10)0.0008 (9)0.0018 (9)
C10.0194 (12)0.0159 (10)0.0212 (11)0.0010 (9)0.0003 (9)0.0032 (8)
C20.0201 (12)0.0185 (10)0.0168 (10)0.0016 (9)0.0004 (9)0.0018 (9)
C30.0198 (12)0.0215 (12)0.0205 (10)0.0017 (9)0.0020 (9)0.0004 (9)
C40.0194 (12)0.0240 (11)0.0209 (11)0.0024 (10)0.0016 (9)0.0032 (10)
C50.0230 (12)0.0238 (11)0.0182 (11)0.0001 (9)0.0013 (10)0.0013 (9)
C60.0174 (11)0.0185 (11)0.0223 (11)0.0011 (9)0.0040 (9)0.0004 (9)
C70.0178 (12)0.0292 (11)0.0258 (11)0.0039 (10)0.0020 (9)0.0002 (10)
C80.0209 (12)0.0294 (13)0.0319 (12)0.0032 (11)0.0061 (11)0.0004 (11)
C90.0304 (14)0.0307 (14)0.0507 (17)0.0060 (12)0.0084 (14)0.0089 (13)
C100.0313 (14)0.0272 (13)0.0388 (14)0.0007 (12)0.0068 (12)0.0012 (11)
C2'0.0278 (13)0.0237 (11)0.0189 (11)0.0045 (10)0.0021 (10)0.0035 (9)
C3'0.0382 (15)0.0269 (13)0.0258 (12)0.0154 (11)0.0072 (11)0.0039 (10)
C4'0.0281 (14)0.0423 (16)0.0243 (12)0.0143 (12)0.0086 (11)0.0104 (11)
C5'0.0168 (12)0.0398 (14)0.0228 (12)0.0010 (11)0.0001 (10)0.0090 (11)
C6'0.0213 (12)0.0274 (12)0.0210 (11)0.0013 (10)0.0000 (9)0.0008 (9)
Geometric parameters (Å, º) top
O1—C41.360 (3)C7—C101.520 (3)
O1—C71.451 (3)C7—H71.0000
Cl1—C21.743 (2)C8—C91.518 (4)
Cl2—C61.739 (2)C8—H8A0.9900
Cl3—C2'1.740 (3)C8—H8B0.9900
Cl4—C5'1.741 (3)C9—H9A0.9800
C1'—C2'1.386 (3)C9—H9B0.9800
C1'—C6'1.396 (3)C9—H9C0.9800
C1'—C11.493 (3)C10—H10A0.9800
C1—C21.391 (3)C10—H10B0.9800
C1—C61.399 (3)C10—H10C0.9800
C2—C31.386 (3)C2'—C3'1.383 (3)
C3—C41.402 (3)C3'—C4'1.384 (4)
C3—H30.9500C3'—H3'0.9500
C4—C51.393 (3)C4'—C5'1.382 (4)
C5—C61.372 (3)C4'—H4'0.9500
C5—H50.9500C5'—C6'1.389 (3)
C7—C81.515 (3)C6'—H6'0.9500
C4—O1—C7120.62 (17)C7—C8—H8B108.8
C2'—C1'—C6'118.5 (2)C9—C8—H8B108.8
C2'—C1'—C1120.7 (2)H8A—C8—H8B107.7
C6'—C1'—C1120.8 (2)C8—C9—H9A109.5
C2—C1—C6115.7 (2)C8—C9—H9B109.5
C2—C1—C1'122.57 (19)H9A—C9—H9B109.5
C6—C1—C1'121.7 (2)C8—C9—H9C109.5
C3—C2—C1123.9 (2)H9A—C9—H9C109.5
C3—C2—Cl1118.18 (17)H9B—C9—H9C109.5
C1—C2—Cl1117.91 (17)C7—C10—H10A109.5
C2—C3—C4118.0 (2)C7—C10—H10B109.5
C2—C3—H3121.0H10A—C10—H10B109.5
C4—C3—H3121.0C7—C10—H10C109.5
O1—C4—C5114.89 (19)H10A—C10—H10C109.5
O1—C4—C3125.2 (2)H10B—C10—H10C109.5
C5—C4—C3119.9 (2)C3'—C2'—C1'121.8 (2)
C6—C5—C4119.8 (2)C3'—C2'—Cl3118.48 (18)
C6—C5—H5120.1C1'—C2'—Cl3119.76 (18)
C4—C5—H5120.1C2'—C3'—C4'119.7 (2)
C5—C6—C1122.7 (2)C2'—C3'—H3'120.2
C5—C6—Cl2118.25 (17)C4'—C3'—H3'120.2
C1—C6—Cl2119.03 (18)C5'—C4'—C3'119.1 (2)
O1—C7—C8105.22 (18)C5'—C4'—H4'120.4
O1—C7—C10110.6 (2)C3'—C4'—H4'120.4
C8—C7—C10112.1 (2)C4'—C5'—C6'121.5 (2)
O1—C7—H7109.6C4'—C5'—Cl4119.38 (19)
C8—C7—H7109.6C6'—C5'—Cl4119.1 (2)
C10—C7—H7109.6C5'—C6'—C1'119.5 (2)
C7—C8—C9113.9 (2)C5'—C6'—H6'120.3
C7—C8—H8A108.8C1'—C6'—H6'120.3
C9—C8—H8A108.8
C2'—C1'—C1—C294.3 (3)C2—C1—C6—Cl2178.73 (16)
C6'—C1'—C1—C285.2 (3)C1'—C1—C6—Cl20.5 (3)
C2'—C1'—C1—C683.9 (3)C4—O1—C7—C8149.7 (2)
C6'—C1'—C1—C696.7 (3)C4—O1—C7—C1089.1 (3)
C6—C1—C2—C31.5 (3)O1—C7—C8—C961.7 (3)
C1'—C1—C2—C3179.7 (2)C10—C7—C8—C9178.1 (2)
C6—C1—C2—Cl1177.90 (17)C6'—C1'—C2'—C3'1.2 (3)
C1'—C1—C2—Cl10.4 (3)C1—C1'—C2'—C3'179.3 (2)
C1—C2—C3—C40.2 (3)C6'—C1'—C2'—Cl3177.88 (16)
Cl1—C2—C3—C4179.12 (18)C1—C1'—C2'—Cl31.6 (3)
C7—O1—C4—C5166.6 (2)C1'—C2'—C3'—C4'0.9 (4)
C7—O1—C4—C314.0 (3)Cl3—C2'—C3'—C4'178.25 (19)
C2—C3—C4—O1178.5 (2)C2'—C3'—C4'—C5'0.3 (4)
C2—C3—C4—C50.8 (3)C3'—C4'—C5'—C6'1.0 (4)
O1—C4—C5—C6178.9 (2)C3'—C4'—C5'—Cl4177.56 (19)
C3—C4—C5—C60.6 (3)C4'—C5'—C6'—C1'0.7 (3)
C4—C5—C6—C10.8 (3)Cl4—C5'—C6'—C1'177.93 (17)
C4—C5—C6—Cl2179.69 (18)C2'—C1'—C6'—C5'0.4 (3)
C2—C1—C6—C51.7 (3)C1—C1'—C6'—C5'179.9 (2)
C1'—C1—C6—C5180.0 (2)
Acknowledgements top

This research was supported by grants ES05605, ES013661 and ES017425 from the National Institute of Environmental Health Sciences, National Institutes of Health.

references
References top

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Fujita, M., Matsushima, H., Sugimura, T., Tai, A. & Okuyama, T. (2001). J. Am. Chem. Soc. 123, 2946–2957.

Lehmler, H.-J., Harrad, S. J., Huhnerfuss, H., Kania-Korwel, I., Lee, C. M., Lu, Z. & Wong, C. S. (2010). Environ. Sci. Technol. 44, 2757–2766.

Lehmler, H.-J., Robertson, L. W. & Parkin, S. (2005). Acta Cryst. E61, o3025–o3026.

Mannila, E. & Rissanen, K. (1994). Acta Chem. Scand. 48, 600–602.

Miao, X.-S., Chu, S.-G., Xu, X.-B. & Jin, X.-L. (1996). Acta Cryst. C52, 2582–2583.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Pedersen, B. F. (1975). Acta Cryst. B31, 2931–2933.

Rissanen, K., Valkonen, J. & Mannila, B. (1988a). Acta Cryst. C44, 682–684.

Rissanen, K., Valkonen, J. & Mannila, B. (1988b). Acta Cryst. C44, 684–686.

Shaikh, N. S., Parkin, S., Luthe, G. & Lehmler, H.-J. (2008). Chemosphere, 70, 1694–1698.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Singh, P. & McKinney, J. D. (1979). Acta Cryst. B35, 259–262.

Singh, P., Pedersen, L. G. & McKinney, J. D. (1986). Acta Cryst. C42, 1172–1175.

Sluis, P. van der, Moes, G. W. H., Behm, H., Smykalla, C., Beurskens, P. T. & Lenstra, A. T. H. (1990). Acta Cryst. C46, 2169–2171.

Vyas, S. M., Parkin, S. & Lehmler, H.-J. (2006). Acta Cryst. E62, o2905–o2906.

Warner, N. A., Martin, J. W. & Wong, C. S. (2009). Environ. Sci. Technol. 43, 114–121.