supplementary materials


nk2205 scheme

Acta Cryst. (2013). E69, m311    [ doi:10.1107/S1600536813012403 ]

Tris(N,N-dimethylanilinium) hexabromidostannate(IV) bromide

H. Chouaib, S. Kamoun and H. F. Ayedi

Abstract top

In the title compound, (C8H12N)3[SnBr6]Br, the anilinium N atom of one of the three unique cations exhibits flip-flop disorder with an 0.60:0.40 occupancy ratio. In the crystal, N-H...Br hydrogen bonds link the N,N-dimethylanilinium cations and both Br- anions and [SnBr6]2- dianions into a layered arrangement parallel to (001).

Comment top

Research in the field of organic-inorganic hybrid compounds is of great interest, because of their special magnetic (Hiraga et al., 2007) and electronic (Karoui et al., 2013) properties. The influence of the different organic cations is expected to affect the packing and then the specific properties. The title crystal structure contains three N,N-dimethylanilinium cations, one bromide ion and one isolated SnBr6 dianions, Fig.1. Each Sn site is surrounded by six Br ligands forming a distorted [SnBr6]2- octahedron with Sn—Br bond lengths ranging from 2.5767 (6) Å to 2.6217 (6) Å. The relatively high values of C—N distances (> 1.5 Å) are due to the disorder of the nitrogen atom N(31). The π-π interactions between phenyl rings may be neglected (>4 Å); in fact the shortest distances between the centroids of the rings are: Cg2 ··· Cg1i = 4.784 (4) Å; Cg1 ··· Cg3ii = 4.993 (4) Å, Cg3 ··· Cg2ii = 5.140 (3) Å (Cg1, Cg2 and Cg3 are the centroids of the C12–C16 and C21–C26 rings, C31—C36 rings, respectively; symmetry codes: (i) x,-1 + y,z; (ii)-x, 0.5 + y, 0.5 - z). The major contributions to the cohesion and the stability of the structure is the presence of N—H···Br hydrogen bonds which provide a linkage between N,N-dimethylanilinium cations and both Br- anions and [SnBr6]2- dianions which include four relatively medium contacts, with H···Br and N..Br distances ranging from 2.30 Å to 2.74 Å and 3.196 (4) Å to 3.631 (8) Å, respectively (Fig. 2 and Table 1).

Related literature top

For related structures, see: Ali et al. (2008), Al-Far et al. (2009); Howie et al. (2009). For electric, magnetic and dielectric properties of related compounds, see: Hiraga et al. (2007); Karoui et al. (2013),

Experimental top

The title compound was prepared by refluxing during 5 h a solution of metallic tin (3 g, 25 mmol) in 40 ml an aqueous solution of hydrobromic acid, HBr 47%. To this solution, 9.5 ml (75 mmol) of a solution of N,N-dimethylaniline was added at reflux temperature. After a slow solvent evaporation yellow crystals suitable for X-ray analysis were obtained. They were washed with diethyl ether and dried over P2O5.

Refinement top

During refinement, the nitrogen atom N(31) showed a static flip-flop disorder. The disordered model was refined with fixed occupancy ratio 60:40 using the tools available in SHELXL97 (Sheldrick, 2008): SADI for restraining and EADP to correlate anisotropic thermal parameters for related disordered atoms. All H atoms were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.93 Å for the phenyl, 0.96 Å for the methyl and N—H= 0.91 Å with Uiso(H)= 1.2 Ueq(C-phenyl, N) or, 1.5Ueq(C-methyl).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound . Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound showing the hydrogen bonding network as red dashed lines.
Tris(N,N-dimethylanilinium) hexabromidostannate(IV) bromide top
Crystal data top
(C8H12N)3[SnBr6]BrF(000) = 1984
Mr = 1044.62Cell parameters from 57951 reflections
Monoclinic, P21/cDx = 1.998 Mg m3
Dm = 2.009 Mg m3
Dm measured by Flotation
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.3408 (6) ÅCell parameters from 57951 reflections
b = 9.1904 (4) Åθ = 1.6–25.0°
c = 26.4029 (12) ŵ = 8.81 mm1
β = 93.451 (2)°T = 296 K
V = 3473.5 (3) Å3Cube, yellow
Z = 40.10 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
6112 independent reflections
Radiation source: fine-focus sealed tube4555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1617
Tmin = 0.415, Tmax = 0.431k = 1010
27006 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.020P)2 + 4.9952P]
where P = (Fo2 + 2Fc2)/3
6112 reflections(Δ/σ)max = 0.001
333 parametersΔρmax = 0.55 e Å3
7 restraintsΔρmin = 0.38 e Å3
Crystal data top
(C8H12N)3[SnBr6]BrV = 3473.5 (3) Å3
Mr = 1044.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3408 (6) ŵ = 8.81 mm1
b = 9.1904 (4) ÅT = 296 K
c = 26.4029 (12) Å0.10 × 0.10 × 0.10 mm
β = 93.451 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6112 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
4555 reflections with I > 2σ(I)
Tmin = 0.415, Tmax = 0.431Rint = 0.044
27006 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.55 e Å3
S = 1.01Δρmin = 0.38 e Å3
6112 reflectionsAbsolute structure: ?
333 parametersFlack parameter: ?
7 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.34886 (2)0.42038 (3)0.357239 (11)0.03803 (9)
Br10.51100 (3)0.36489 (6)0.32373 (2)0.05700 (15)
Br20.27708 (3)0.21753 (5)0.297717 (19)0.05008 (13)
Br30.18550 (3)0.47638 (6)0.38796 (2)0.06065 (15)
Br40.42257 (4)0.62582 (6)0.415392 (19)0.06096 (16)
Br50.32156 (4)0.61078 (6)0.283898 (19)0.05471 (14)
Br60.37920 (4)0.23426 (6)0.42947 (2)0.06195 (15)
Br70.05993 (4)0.72433 (6)0.48704 (2)0.06009 (15)
C110.8147 (3)0.4670 (5)0.40030 (16)0.0408 (11)
C120.9067 (3)0.4520 (5)0.38938 (18)0.0490 (12)
H120.95430.46070.41470.059*
C130.9264 (4)0.4237 (6)0.3399 (2)0.0600 (14)
H130.98820.41420.33150.072*
C140.8561 (4)0.4095 (6)0.30307 (19)0.0651 (15)
H140.87030.38880.26990.078*
C150.7657 (4)0.4254 (7)0.3145 (2)0.0671 (16)
H150.71810.41720.28910.080*
C160.7444 (3)0.4537 (6)0.36346 (19)0.0575 (14)
H160.68250.46370.37150.069*
C170.7015 (4)0.4466 (7)0.4685 (2)0.086 (2)
H17A0.69450.47080.50350.128*
H17B0.69770.34300.46430.128*
H17C0.65280.49240.44770.128*
C180.8038 (4)0.6560 (6)0.4652 (2)0.0769 (18)
H18A0.79060.67220.50000.115*
H18B0.76060.71070.44350.115*
H18C0.86640.68680.45990.115*
N110.7940 (3)0.4989 (5)0.45325 (14)0.0525 (10)
H10.83800.45170.47340.063*
C210.0426 (3)0.9402 (5)0.35440 (17)0.0438 (11)
C220.0362 (4)1.0562 (6)0.3223 (2)0.0590 (14)
H220.07501.13660.32730.071*
C230.0299 (4)1.0508 (7)0.2821 (2)0.0689 (16)
H230.03541.12880.25970.083*
C240.0864 (4)0.9350 (7)0.2747 (2)0.0653 (15)
H240.13090.93410.24750.078*
C250.0788 (4)0.8201 (7)0.3066 (2)0.0735 (17)
H250.11790.74010.30130.088*
C260.0128 (4)0.8212 (6)0.3471 (2)0.0634 (15)
H260.00640.74180.36890.076*
C270.1164 (5)1.0776 (6)0.4274 (2)0.0774 (18)
H27A0.16231.06960.45520.116*
H27B0.05631.09640.44020.116*
H27C0.13281.15620.40570.116*
C280.2073 (4)0.8948 (6)0.3829 (2)0.0707 (16)
H28A0.25000.89440.41230.106*
H28B0.22850.96260.35840.106*
H28C0.20410.79920.36830.106*
N210.1128 (3)0.9387 (4)0.39786 (15)0.0509 (10)
H20.09420.86870.41940.061*
C320.4009 (5)0.4525 (8)0.0832 (3)0.107 (3)
H320.45890.41710.07510.128*
C380.4210 (4)0.2539 (6)0.1905 (2)0.0648 (15)
C370.5277 (4)0.4612 (7)0.1808 (3)0.0710 (17)
C310.3753 (4)0.4520 (7)0.1324 (3)0.084 (2)
N31A0.4589 (7)0.3584 (11)0.1545 (4)0.044 (2)0.40
C340.2539 (5)0.5579 (7)0.0589 (3)0.100 (3)
H340.21230.59500.03380.120*
C350.2300 (5)0.5551 (8)0.1080 (3)0.100 (2)
H350.17190.58950.11630.119*
C360.2906 (5)0.5022 (8)0.1448 (3)0.097 (2)
H360.27440.50030.17830.117*
C330.3390 (6)0.5064 (9)0.0464 (3)0.109 (3)
H330.35480.50800.01280.131*
N31B0.4261 (5)0.4111 (8)0.1831 (3)0.0515 (18)0.60
H3B0.41000.46450.21030.13 (5)*0.60
H3A0.50060.31140.14100.18 (11)*0.40
H37A0.52430.55880.16730.14 (3)*
H37B0.57530.40840.16460.21 (5)*
H37C0.54370.46630.21670.15 (3)*
H38A0.45970.18500.17470.31 (7)*
H38B0.35640.23170.18250.10 (2)*
H38C0.43380.25410.22630.29 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03490 (16)0.04135 (18)0.03801 (17)0.00518 (14)0.00366 (13)0.00125 (14)
Br10.0349 (3)0.0660 (3)0.0708 (4)0.0059 (2)0.0090 (2)0.0079 (3)
Br20.0450 (3)0.0501 (3)0.0548 (3)0.0096 (2)0.0002 (2)0.0069 (2)
Br30.0456 (3)0.0628 (3)0.0754 (4)0.0049 (3)0.0187 (3)0.0003 (3)
Br40.0764 (4)0.0629 (3)0.0441 (3)0.0256 (3)0.0081 (3)0.0089 (3)
Br50.0653 (3)0.0499 (3)0.0481 (3)0.0041 (3)0.0039 (2)0.0104 (2)
Br60.0702 (3)0.0619 (3)0.0533 (3)0.0010 (3)0.0001 (3)0.0163 (3)
Br70.0630 (3)0.0667 (4)0.0504 (3)0.0031 (3)0.0019 (2)0.0128 (3)
C110.042 (3)0.044 (3)0.036 (2)0.002 (2)0.002 (2)0.005 (2)
C120.041 (3)0.057 (3)0.049 (3)0.002 (2)0.005 (2)0.006 (3)
C130.051 (3)0.072 (4)0.058 (3)0.003 (3)0.014 (3)0.005 (3)
C140.077 (4)0.079 (4)0.039 (3)0.001 (3)0.002 (3)0.005 (3)
C150.061 (4)0.086 (4)0.052 (3)0.011 (3)0.013 (3)0.006 (3)
C160.045 (3)0.071 (4)0.054 (3)0.003 (3)0.007 (2)0.000 (3)
C170.083 (4)0.103 (5)0.075 (4)0.012 (4)0.037 (3)0.001 (4)
C180.079 (4)0.072 (4)0.082 (4)0.014 (3)0.016 (3)0.027 (3)
N110.048 (2)0.063 (3)0.047 (2)0.009 (2)0.0001 (19)0.003 (2)
C210.039 (2)0.049 (3)0.043 (3)0.001 (2)0.002 (2)0.002 (2)
C220.059 (3)0.053 (3)0.065 (3)0.009 (3)0.003 (3)0.015 (3)
C230.072 (4)0.070 (4)0.065 (4)0.010 (3)0.002 (3)0.022 (3)
C240.059 (3)0.080 (4)0.055 (3)0.010 (3)0.009 (3)0.010 (3)
C250.077 (4)0.066 (4)0.075 (4)0.017 (3)0.011 (3)0.011 (4)
C260.082 (4)0.045 (3)0.062 (4)0.012 (3)0.010 (3)0.005 (3)
C270.100 (5)0.062 (4)0.069 (4)0.012 (3)0.009 (3)0.016 (3)
C280.049 (3)0.071 (4)0.092 (4)0.003 (3)0.005 (3)0.017 (3)
N210.057 (3)0.047 (2)0.049 (2)0.006 (2)0.001 (2)0.004 (2)
C320.093 (5)0.083 (5)0.144 (8)0.024 (4)0.010 (6)0.015 (5)
C380.070 (4)0.055 (4)0.071 (4)0.008 (3)0.015 (3)0.018 (3)
C370.061 (4)0.063 (4)0.087 (5)0.015 (3)0.014 (3)0.007 (3)
C310.067 (4)0.080 (5)0.101 (5)0.026 (4)0.038 (4)0.038 (4)
N31A0.040 (6)0.045 (6)0.048 (6)0.004 (5)0.002 (5)0.006 (5)
C340.123 (6)0.068 (5)0.101 (6)0.021 (4)0.067 (5)0.007 (4)
C350.091 (5)0.098 (6)0.106 (6)0.021 (4)0.016 (5)0.012 (5)
C360.101 (6)0.109 (6)0.079 (5)0.019 (5)0.017 (4)0.009 (4)
C330.161 (8)0.093 (6)0.072 (5)0.023 (6)0.005 (5)0.005 (4)
N31B0.049 (4)0.055 (5)0.050 (4)0.005 (4)0.001 (4)0.005 (4)
Geometric parameters (Å, º) top
Sn1—Br32.5767 (6)C25—H250.9300
Sn1—Br62.5792 (6)C26—H260.9300
Sn1—Br12.5879 (6)C27—N211.495 (6)
Sn1—Br22.6096 (6)C27—H27A0.9600
Sn1—Br42.6161 (6)C27—H27B0.9600
Sn1—Br52.6217 (6)C27—H27C0.9600
C11—C161.363 (6)C28—N211.490 (6)
C11—C121.375 (6)C28—H28A0.9600
C11—N111.476 (5)C28—H28B0.9600
C12—C131.378 (7)C28—H28C0.9600
C12—H120.9300N21—H20.9100
C13—C141.364 (7)C32—C331.370 (7)
C13—H130.9300C32—C311.371 (6)
C14—C151.357 (7)C32—H320.9300
C14—H140.9300C38—N31B1.460 (9)
C15—C161.371 (7)C38—N31A1.478 (11)
C15—H150.9300C38—H38A0.954
C16—H160.9300C38—H38B0.960
C17—N111.488 (7)C38—H38C0.951
C17—H17A0.9600C37—N31A1.507 (11)
C17—H17B0.9600C37—N31B1.532 (9)
C17—H17C0.9600C37—H37A0.966
C18—N111.483 (7)C37—H37B0.960
C18—H18A0.9600C37—H37C0.962
C18—H18B0.9600C31—C361.356 (7)
C18—H18C0.9600C31—N31B1.531 (9)
N11—H10.9100C31—N31A1.560 (12)
C21—C261.358 (7)N31A—N31B1.034 (12)
C21—C221.362 (7)N31A—H3A0.834
C21—N211.480 (6)C34—C351.361 (7)
C22—C231.380 (7)C34—C331.367 (7)
C22—H220.9300C34—H340.9300
C23—C241.345 (8)C35—C361.354 (7)
C23—H230.9300C35—H350.9300
C24—C251.351 (8)C36—H360.9300
C24—H240.9300C33—H330.9300
C25—C261.386 (7)N31B—H3B0.912
Br3—Sn1—Br690.91 (2)H27B—C27—H27C109.5
Br3—Sn1—Br1178.36 (2)N21—C28—H28A109.5
Br6—Sn1—Br190.40 (2)N21—C28—H28B109.5
Br3—Sn1—Br289.948 (19)H28A—C28—H28B109.5
Br6—Sn1—Br290.82 (2)N21—C28—H28C109.5
Br1—Sn1—Br289.042 (19)H28A—C28—H28C109.5
Br3—Sn1—Br490.80 (2)H28B—C28—H28C109.5
Br6—Sn1—Br490.03 (2)C21—N21—C28112.6 (4)
Br1—Sn1—Br490.19 (2)C21—N21—C27113.4 (4)
Br2—Sn1—Br4178.86 (2)C28—N21—C27111.5 (4)
Br3—Sn1—Br590.06 (2)C21—N21—H2106.3
Br6—Sn1—Br5178.87 (2)C28—N21—H2106.3
Br1—Sn1—Br588.64 (2)C27—N21—H2106.3
Br2—Sn1—Br589.773 (19)C33—C32—C31118.3 (6)
Br4—Sn1—Br589.37 (2)C33—C32—H32120.9
C16—C11—C12121.3 (4)C31—C32—H32120.9
C16—C11—N11120.8 (4)N31B—C38—N31A41.2 (5)
C12—C11—N11118.0 (4)N31B—C38—H38A124.3
C11—C12—C13118.2 (4)N31A—C38—H38A84.5
C11—C12—H12120.9N31B—C38—H38B103.6
C13—C12—H12120.9N31A—C38—H38B112.5
C14—C13—C12120.6 (5)H38A—C38—H38B109.9
C14—C13—H13119.7N31B—C38—H38C97.1
C12—C13—H13119.7N31A—C38—H38C125.6
C15—C14—C13120.5 (5)H38A—C38—H38C110.7
C15—C14—H14119.8H38B—C38—H38C110.1
C13—C14—H14119.8N31A—C37—N31B39.8 (5)
C14—C15—C16119.9 (5)N31A—C37—H37A113.3
C14—C15—H15120.0N31B—C37—H37A105.5
C16—C15—H15120.0N31A—C37—H37B86.6
C11—C16—C15119.6 (5)N31B—C37—H37B124.7
C11—C16—H16120.2H37A—C37—H37B109.0
C15—C16—H16120.2N31A—C37—H37C126.6
N11—C17—H17A109.5N31B—C37—H37C98.6
N11—C17—H17B109.5H37A—C37—H37C108.9
H17A—C17—H17B109.5H37B—C37—H37C109.3
N11—C17—H17C109.5C36—C31—C32121.5 (6)
H17A—C17—H17C109.5C36—C31—N31B105.0 (7)
H17B—C17—H17C109.5C32—C31—N31B133.4 (7)
N11—C18—H18A109.5C36—C31—N31A140.9 (8)
N11—C18—H18B109.5C32—C31—N31A96.4 (7)
H18A—C18—H18B109.5N31B—C31—N31A39.1 (4)
N11—C18—H18C109.5N31B—N31A—C3868.5 (8)
H18A—C18—H18C109.5N31B—N31A—C3771.5 (8)
H18B—C18—H18C109.5C38—N31A—C37111.4 (8)
C11—N11—C18111.9 (4)N31B—N31A—C3168.9 (8)
C11—N11—C17115.2 (4)C38—N31A—C31107.2 (7)
C18—N11—C17109.3 (4)C37—N31A—C31107.1 (7)
C11—N11—H1106.6N31B—N31A—H3A157.3 (12)
C18—N11—H1106.6C38—N31A—H3A103.8 (9)
C17—N11—H1106.6C37—N31A—H3A93.1 (8)
C26—C21—C22121.7 (5)C31—N31A—H3A133.0 (11)
C26—C21—N21117.8 (4)C35—C34—C33120.2 (6)
C22—C21—N21120.4 (4)C35—C34—H34119.9
C21—C22—C23117.9 (5)C33—C34—H34119.9
C21—C22—H22121.1C36—C35—C34120.1 (7)
C23—C22—H22121.1C36—C35—H35119.9
C24—C23—C22121.4 (5)C34—C35—H35119.9
C24—C23—H23119.3C35—C36—C31119.7 (7)
C22—C23—H23119.3C35—C36—H36120.2
C23—C24—C25120.1 (5)C31—C36—H36120.2
C23—C24—H24119.9C34—C33—C32120.2 (7)
C25—C24—H24119.9C34—C33—H33119.9
C24—C25—C26120.1 (5)C32—C33—H33119.9
C24—C25—H25119.9N31A—N31B—C3870.3 (8)
C26—C25—H25119.9N31A—N31B—C3172.0 (8)
C21—C26—C25118.8 (5)C38—N31B—C31109.6 (6)
C21—C26—H26120.6N31A—N31B—C3768.8 (7)
C25—C26—H26120.6C38—N31B—C37110.9 (6)
N21—C27—H27A109.5C31—N31B—C37107.3 (6)
N21—C27—H27B109.5N31A—N31B—H3B167.5
H27A—C27—H27B109.5C38—N31B—H3B114.1
N21—C27—H27C109.5C31—N31B—H3B115.3
H27A—C27—H27C109.5C37—N31B—H3B98.9
C16—C11—C12—C130.3 (7)C32—C31—N31A—N31B163.7 (8)
N11—C11—C12—C13179.4 (4)C36—C31—N31A—C3827.9 (14)
C11—C12—C13—C140.7 (8)C32—C31—N31A—C38138.4 (8)
C12—C13—C14—C151.1 (9)N31B—C31—N31A—C3858.0 (8)
C13—C14—C15—C161.0 (9)C36—C31—N31A—C3791.7 (11)
C12—C11—C16—C150.3 (8)C32—C31—N31A—C37102.0 (8)
N11—C11—C16—C15179.4 (5)N31B—C31—N31A—C3761.7 (8)
C14—C15—C16—C110.6 (9)C33—C34—C35—C360.5 (12)
C16—C11—N11—C1897.6 (5)C34—C35—C36—C310.1 (12)
C12—C11—N11—C1882.1 (5)C32—C31—C36—C350.5 (11)
C16—C11—N11—C1728.1 (7)N31B—C31—C36—C35176.5 (7)
C12—C11—N11—C17152.2 (5)N31A—C31—C36—C35164.4 (9)
C26—C21—C22—C231.0 (8)C35—C34—C33—C320.4 (12)
N21—C21—C22—C23179.2 (4)C31—C32—C33—C340.1 (12)
C21—C22—C23—C240.1 (8)C37—N31A—N31B—C38123.1 (5)
C22—C23—C24—C250.7 (9)C31—N31A—N31B—C38119.5 (5)
C23—C24—C25—C260.1 (9)C38—N31A—N31B—C31119.5 (5)
C22—C21—C26—C251.6 (8)C37—N31A—N31B—C31117.5 (5)
N21—C21—C26—C25179.8 (5)C38—N31A—N31B—C37123.1 (5)
C24—C25—C26—C211.0 (9)C31—N31A—N31B—C37117.5 (5)
C26—C21—N21—C2896.9 (5)N31A—C38—N31B—C3161.5 (8)
C22—C21—N21—C2881.4 (6)N31A—C38—N31B—C3756.7 (8)
C26—C21—N21—C27135.4 (5)C36—C31—N31B—N31A160.9 (8)
C22—C21—N21—C2746.3 (6)C32—C31—N31B—N31A22.6 (11)
C33—C32—C31—C360.5 (11)C36—C31—N31B—C38100.4 (7)
C33—C32—C31—N31B175.4 (7)C32—C31—N31B—C3883.1 (10)
C33—C32—C31—N31A170.4 (7)N31A—C31—N31B—C3860.5 (8)
N31B—C38—N31A—C3758.6 (8)C36—C31—N31B—C37139.0 (6)
N31B—C38—N31A—C3158.3 (8)C32—C31—N31B—C3737.4 (11)
N31B—C37—N31A—C3856.9 (8)N31A—C31—N31B—C3760.0 (8)
N31B—C37—N31A—C3160.0 (8)N31A—C37—N31B—C3857.6 (8)
C36—C31—N31A—N31B30.0 (13)N31A—C37—N31B—C3162.1 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H1···Br7i0.912.383.269 (4)165
N21—H2···Br70.912.303.196 (4)168
N31B—H3B···Br50.912.743.631 (8)167.1
N31A—H3A···Br4ii0.832.563.352 (13)159.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H1···Br7i0.912.383.269 (4)165.1
N21—H2···Br70.912.303.196 (4)167.9
N31B—H3B···Br50.912.743.631 (8)167.1
N31A—H3A···Br4ii0.832.563.352 (13)159.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2.
Acknowledgements top

The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.

references
References top

Al-Far, R. H., Haddad, S. F. & Ali, B. F. (2009). Acta Cryst. E65, m583–m584.

Ali, B. F., Al-Far, R. H. & Haddad, S. F. (2008). Acta Cryst. E64, m749–m750.

Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hiraga, H., Miyasaka, H., Nakata, K., Kajiwara, T., Takaishi, S., Oshim, Y., Nojiri, H. & Yamashita, M. (2007). Inorg. Chem. 46, 9661–9671.

Howie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, m1562.

Karoui, S., Kamoun, S. & Jouini, A. (2013). J. Solid State Chem. 197, 60–68.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.