Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*Z*)-*N-tert*-Butyl-2-(4-methoxyanilino)-*N*'-(4-methoxyphenyl)-2-phenylacetimidamide

Sue A. Roberts,^a* Biswajit Saha,^{b,c} Brendan Frett^{b,c} and Hong-Yu Li^{b,c}

^aDepartment of Chemistry and Biochemistry, 1306 E University Boulevard, The University of Arizona, Tucson, AZ 85721, USA, ^bCollege of Pharmacy, Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ 85721, USA, and ^cBio5 Oro Valley, The University of Arizona, Oro Valley, AZ 85737, USA Correspondence e-mail: suer@email.arizona.edu

Received 10 April 2013; accepted 9 May 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.106; data-to-parameter ratio = 22.9.

In the crystal of the title compound, $C_{26}H_{31}N_3O_2$, pairs of N-H···O hydrogen bonds link molecules, forming inversion dimers, which enclose an $R_2^2(20)$ ring motif. One N atom does not form hydrogen bonds and lies in a hydrophobic pocket with closest intermolecular contacts of 4.196 (2) and 4.262 (2) Å.

Related literature

For the synthesis of the title compound, and a discussion of the use of the three-component Ugi reaction to synthesize amidines, see: Saha *et al.* (2013).

Crystal data $C_{26}H_{31}N_3O_2$ $M_r = 417.54$

Triclinic, $P\overline{1}$ a = 10.0804 (17) Å

b = 10.5784 (17) Å	
c = 11.1573 (18) Å	
$\alpha = 80.982 \ (4)^{\circ}$	
$\beta = 85.152 \ (4)^{\circ}$	
$\gamma = 80.270 \ (4)^{\circ}$	
V = 1156.1 (3) Å ³	

Data collection

Bruker Kappa APEXII DUO CCD	32612 measured reflections
diffractometer	6607 independent reflections
Absorption correction: multi-scan	5476 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.019$
$T_{\min} = 0.89, \ T_{\max} = 0.99$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.106$	independent and constrained
S = 0.94	refinement
6607 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
289 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

Z = 2

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.10 \text{ mm}$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 100 K

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $N2-H2\cdots O1^i$ 0.887 (15)
 2.328 (15)
 3.1698 (13)
 158.5 (12)

 Symmetry code: (i) -x + 1, -y + 2, -z + 2. Z = 12 + 2.2 + 2

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *OLEX2* (Dolomanov *et al.*, 2009); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The Bruker Kappa APEXII DUO was purchased with funding from NSF grant CHE-0741837. The work was supported by start-up funds from the University of Arizona to HYL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2477).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Saha, B., Frett, B., Wang, Y. & Li, H.-Y. (2013). Tetrahedron Lett. 54, 2340– 2343.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, o902 [doi:10.1107/S1600536813012877]

(*Z*)-*N-tert*-Butyl-2-(4-methoxyanilino)-*N'*-(4-methoxyphenyl)-2-phenyl-acetimidamide

Sue A. Roberts, Biswajit Saha, Brendan Frett and Hong-Yu Li

S1. Comment

The title compound was prepared as a secondary product of the three component Ugi reaction (Saha *et al.*, 2013). The central C1—C22 single bond has four bulky substituents arranged, roughly, as if pointing at the corners of a tetrahedron. The angle between the planes containing the substituents, defined by N1—C22—N3 and C2—C1—C20, is 72.41 (1)°. Pairs of hydrogen bonds between N2 and O1 [3.170 (1) Å] connect two molecules across an inversion center, creating a cavity around the inversion center with a diameter of about 5 Å. The closest contact across the inversion center involving atoms not involved in the hydrogen bonding is 3.151 (3) Å between the hydrogen bonded to C3 and its symmetry equivalent (symmetry transformation -x + 1, -y + 2, -z + 2). The hydrogen bonding graph set is $R^2_2(20)$. Nitrogen N3 is unusual in that, although protonated, it does not form hydrogen bonds with acceptor atoms. Instead, it lies in a hydrophobic cavity with closest intermolecular contacts of 4.196 (2) Å and 4.262 (2) Å to C15 and C16 respectively.

S2. Experimental

The compound was synthesized as previously reported [compound 5a in (Saha *et al.*, 2013)]. The crude residue was purified by silica gel column chromatography using (10–30%) ethylacetate-hexane to obtain the pure product. The pure compound was dissolved in 50% ethylacetate-hexane and kept at room temperature for 2 days during which crystals formed.

S3. Refinement

All hydrogen atoms were visible in a difference Fourier map and, except for H2 were added at calculated positions. Bond distances are set to 0.95 Å for aromatic carbon-hydrogen bonds, 0.98 Å for methyl group carbon-hydrogen bonds and 0.88 Å for nitrogen-hydrogen bonds. Thermal parameters for hydrogen atoms were set to 1.2 times the isotropic equivalent thermal parameter of the atom to which the hydrogen atom is bonded, except for methyl group hydrogen atoms where the thermal parameter was set to 1.5 times the isotropic equivalent thermal parameter of the carbon atom the hydrogen atom is bonded to. The positional and isotropic thermal parameters of H2 were refined.

Figure 1

The molecular structure of the title compound. Non-hydrogen atoms are shown as 50% probability ellipsoids.

Figure 2

View showing unit cell packing. Unit cell axes are labeled in the figure.

(Z)-N-tert-Butyl-2-(4-methoxyanilino)-N'-(4-methoxyphenyl)-2-phenylacetimidamide

Crystal	data
---------	------

 $\begin{array}{l} C_{26}H_{31}N_{3}O_{2}\\ M_{r}=417.54\\ Triclinic, P\overline{1}\\ a=10.0804~(17)~\text{\AA}\\ b=10.5784~(17)~\text{\AA}\\ c=11.1573~(18)~\text{\AA}\\ \alpha=80.982~(4)^{\circ}\\ \beta=85.152~(4)^{\circ}\\ \gamma=80.270~(4)^{\circ}\\ V=1156.1~(3)~\text{\AA}^{3} \end{array}$

Data collection

Bruker Kappa APEXII DUO CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Z = 2 F(000) = 448 $D_x = 1.199 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9952 reflections $\theta = 2.9-29.8^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.20 \times 0.20 \times 0.10 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.89$, $T_{max} = 0.99$ 32612 measured reflections 6607 independent reflections 5476 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$

$\theta_{\rm max} = 29.9^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$	$k = -14 \rightarrow 12$
$h = -14 \rightarrow 11$	$l = -15 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.106$	neighbouring sites
S = 0.94	H atoms treated by a mixture of independent
6607 reflections	and constrained refinement
289 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0397P)^2 + 0.6486P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\min} = -0.38 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic or	equivalent isotrop	oic displacement	parameters ($(Å^2)$
				P	/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C20	0.37947 (10)	1.03405 (9)	0.68022 (9)	0.01884 (19)
C11	0.15660 (10)	0.92039 (10)	1.16518 (9)	0.0213 (2)
H11	0.0822	0.9836	1.1842	0.026*
C18	0.15655 (11)	1.15884 (10)	0.70473 (10)	0.0226 (2)
H18	0.0708	1.1695	0.7475	0.027*
C15	0.40664 (11)	1.12635 (10)	0.57996 (9)	0.02047 (19)
H15	0.4919	1.1155	0.5363	0.025*
C16	0.31125 (11)	1.23257 (10)	0.54406 (9)	0.0219 (2)
H16	0.3313	1.2940	0.4761	0.026*
C22	0.35777 (10)	0.75795 (9)	0.82814 (9)	0.01868 (19)
C10	0.36795 (11)	0.78673 (11)	1.21611 (9)	0.0228 (2)
H10	0.4377	0.7582	1.2709	0.027*
C12	0.16277 (10)	0.86653 (10)	1.05826 (9)	0.0212 (2)
H12	0.0906	0.8921	1.0057	0.025*
C19	0.25281 (11)	1.05135 (10)	0.74063 (10)	0.0224 (2)
H19	0.2315	0.9890	0.8074	0.027*
C8	0.27219 (10)	0.77613 (10)	1.02648 (9)	0.01957 (19)
C1	0.46163 (10)	0.84821 (9)	0.83240 (9)	0.01839 (18)
H1	0.4260	0.9082	0.8927	0.022*
C17	0.18548 (10)	1.25005 (10)	0.60709 (9)	0.0206 (2)
С9	0.37371 (11)	0.73460 (10)	1.10887 (9)	0.0223 (2)
H9	0.4473	0.6700	1.0910	0.027*

C2	0.59808 (10)	0.77504 (10)	0.87123 (9)	0.0209 (2)
C26	0.27437 (11)	0.63246 (10)	0.68176 (9)	0.0220 (2)
C3	0.67295 (12)	0.83256 (11)	0.93977 (11)	0.0280 (2)
H3	0.6367	0.9144	0.9636	0.034*
C24	0.12887 (12)	0.70234 (13)	0.67994 (12)	0.0318 (3)
H24A	0.0962	0.7183	0.7623	0.048*
H24B	0.0722	0.6484	0.6505	0.048*
H24C	0.1249	0.7852	0.6258	0.048*
C7	0.65156 (13)	0.65363 (12)	0.83952 (12)	0.0329 (3)
H7	0.6010	0.6121	0.7938	0.039*
C25	0.32629 (13)	0.61040 (12)	0.55297 (10)	0.0299 (2)
H25A	0.3167	0.6936	0.4991	0.045*
H25B	0.2739	0.5524	0.5239	0.045*
H25C	0.4215	0.5710	0.5532	0.045*
C4	0.80027 (13)	0.77209 (13)	0.97403 (12)	0.0336 (3)
H4	0.8505	0.8127	1.0209	0.040*
C21	-0.02644 (12)	1.38154 (12)	0.63778 (12)	0.0333 (3)
H21A	-0.0784	1.3119	0.6344	0.050*
H21B	-0.0785	1.4649	0.6052	0.050*
H21C	-0.0078	1.3829	0.7223	0.050*
C14	0.15403 (12)	1.02124 (13)	1.38420 (12)	0.0335 (3)
H14A	0.1460	1.0989	1.3229	0.050*
H14B	0.1674	1.0449	1.4633	0.050*
H14C	0.0715	0.9827	1.3897	0.050*
C5	0.85386 (12)	0.65322 (13)	0.94015 (12)	0.0350 (3)
Н5	0.9419	0.6128	0.9616	0.042*
C23	0.28606 (16)	0.50314 (12)	0.76560 (12)	0.0366 (3)
H23A	0.3800	0.4597	0.7629	0.055*
H23B	0.2285	0.4483	0.7388	0.055*
H23C	0.2573	0.5183	0.8490	0.055*
C6	0.77862 (14)	0.59305 (14)	0.87460 (13)	0.0405 (3)
H6	0.8141	0.5098	0.8535	0.049*
02	0.09729 (8)	1.35968 (7)	0.56724 (7)	0.02582 (17)
01	0.26631 (8)	0.92977 (8)	1.35034 (7)	0.02582 (17)
N2	0.47953 (9)	0.92663 (8)	0.71356 (8)	0.01953 (17)
N3	0.36308 (9)	0.71424 (9)	0.71966 (8)	0.02124 (18)
H3A	0.4268	0.7374	0.6658	0.025*
NI	0.27336 (9)	0.72595 (9)	0.91628 (8)	0.02123 (18)
C13	0.26038 (10)	0.88065 (10)	1.24380 (9)	0.0204 (2)
H2	0 5625 (15)	0 9449 (14)	0 6977 (13)	$0.027(3)^{*}$
	0.00020 (10)			0.027 (0)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C20	0.0210 (4)	0.0187 (4)	0.0171 (4)	-0.0043 (4)	-0.0002 (3)	-0.0025 (3)
C11	0.0189 (4)	0.0221 (5)	0.0226 (5)	-0.0038 (4)	0.0033 (4)	-0.0041 (4)
C18	0.0203 (5)	0.0226 (5)	0.0236 (5)	-0.0037 (4)	0.0019 (4)	-0.0008 (4)
C15	0.0230 (5)	0.0221 (5)	0.0164 (4)	-0.0057 (4)	0.0020 (4)	-0.0025 (3)

supporting information

C16	0.0275 (5)	0.0212 (5)	0.0168 (4)	-0.0066 (4)	0.0000 (4)	0.0002 (3)
C22	0.0206 (4)	0.0177 (4)	0.0170 (4)	-0.0019 (3)	-0.0004 (3)	-0.0022 (3)
C10	0.0227 (5)	0.0274 (5)	0.0177 (4)	-0.0019 (4)	-0.0007 (4)	-0.0033 (4)
C12	0.0198 (4)	0.0246 (5)	0.0191 (4)	-0.0052 (4)	0.0003 (4)	-0.0017 (4)
C19	0.0229 (5)	0.0210 (5)	0.0212 (5)	-0.0034 (4)	0.0025 (4)	0.0016 (4)
C8	0.0219 (5)	0.0212 (5)	0.0160 (4)	-0.0072 (4)	0.0026 (4)	-0.0018 (3)
C1	0.0202 (4)	0.0185 (4)	0.0160 (4)	-0.0032 (3)	0.0014 (3)	-0.0021 (3)
C17	0.0228 (5)	0.0189 (5)	0.0205 (4)	-0.0036 (4)	-0.0036 (4)	-0.0022 (4)
C9	0.0231 (5)	0.0236 (5)	0.0186 (4)	-0.0005 (4)	0.0014 (4)	-0.0035 (4)
C2	0.0204 (4)	0.0227 (5)	0.0176 (4)	-0.0023 (4)	0.0017 (4)	0.0003 (4)
C26	0.0253 (5)	0.0227 (5)	0.0190 (4)	-0.0051 (4)	-0.0019 (4)	-0.0050 (4)
C3	0.0265 (5)	0.0246 (5)	0.0331 (6)	-0.0050 (4)	-0.0047 (4)	-0.0024 (4)
C24	0.0237 (5)	0.0407 (7)	0.0322 (6)	-0.0036 (5)	-0.0011 (4)	-0.0112 (5)
C7	0.0319 (6)	0.0317 (6)	0.0344 (6)	0.0050 (5)	-0.0052 (5)	-0.0120 (5)
C25	0.0323 (6)	0.0362 (6)	0.0235 (5)	-0.0045 (5)	-0.0005 (4)	-0.0132 (4)
C4	0.0283 (6)	0.0347 (6)	0.0371 (6)	-0.0080 (5)	-0.0088 (5)	0.0036 (5)
C21	0.0233 (5)	0.0299 (6)	0.0406 (7)	0.0017 (4)	-0.0003 (5)	0.0062 (5)
C14	0.0255 (5)	0.0433 (7)	0.0359 (6)	-0.0052 (5)	0.0066 (5)	-0.0234 (5)
C5	0.0249 (5)	0.0396 (7)	0.0336 (6)	0.0028 (5)	-0.0021 (5)	0.0080 (5)
C23	0.0594 (8)	0.0243 (6)	0.0291 (6)	-0.0136 (6)	-0.0126 (6)	-0.0005 (4)
C6	0.0363 (7)	0.0366 (7)	0.0433 (7)	0.0128 (5)	-0.0028 (6)	-0.0091 (6)
O2	0.0252 (4)	0.0223 (4)	0.0267 (4)	-0.0005 (3)	-0.0026 (3)	0.0034 (3)
01	0.0240 (4)	0.0337 (4)	0.0215 (4)	-0.0035 (3)	0.0026 (3)	-0.0124 (3)
N2	0.0194 (4)	0.0206 (4)	0.0172 (4)	-0.0035 (3)	0.0028 (3)	-0.0002 (3)
N3	0.0237 (4)	0.0240 (4)	0.0171 (4)	-0.0065 (3)	0.0030 (3)	-0.0056 (3)
N1	0.0246 (4)	0.0233 (4)	0.0164 (4)	-0.0062 (3)	0.0010 (3)	-0.0033 (3)
C13	0.0213 (5)	0.0235 (5)	0.0173 (4)	-0.0069 (4)	0.0035 (4)	-0.0047 (4)

Geometric parameters (Å, °)

C20—C15	1.4057 (14)	C26—C25	1.5264 (15)
C20—C19	1.3901 (14)	C26—C23	1.5243 (16)
C20—N2	1.4108 (13)	C26—N3	1.4721 (13)
C11—H11	0.9500	С3—Н3	0.9500
C11—C12	1.3930 (14)	C3—C4	1.3897 (17)
C11—C13	1.3897 (15)	C24—H24A	0.9800
C18—H18	0.9500	C24—H24B	0.9800
C18—C19	1.3946 (15)	C24—H24C	0.9800
C18—C17	1.3836 (14)	С7—Н7	0.9500
C15—H15	0.9500	C7—C6	1.3903 (18)
C15—C16	1.3807 (15)	C25—H25A	0.9800
C16—H16	0.9500	C25—H25B	0.9800
C16—C17	1.3953 (15)	C25—H25C	0.9800
C22—C1	1.5397 (14)	C4—H4	0.9500
C22—N3	1.3556 (12)	C4—C5	1.3787 (19)
C22—N1	1.2873 (13)	C21—H21A	0.9800
C10—H10	0.9500	C21—H21B	0.9800
С10—С9	1.3869 (14)	C21—H21C	0.9800

C10—C13	1.3906 (15)	C21—O2	1.4220 (15)
C12—H12	0.9500	C14—H14A	0.9800
C12—C8	1.3930 (15)	C14—H14B	0.9800
С19—Н19	0.9500	C14—H14C	0.9800
C8—C9	1.4021 (14)	C14—O1	1.4256 (14)
C8—N1	1.4120 (13)	С5—Н5	0.9500
C1—H1	1.0000	C5—C6	1.385 (2)
C1—C2	1.5213 (14)	С23—Н23А	0.9800
C1—N2	1.4643 (13)	С23—Н23В	0.9800
C17—O2	1.3747 (12)	С23—Н23С	0.9800
С9—Н9	0.9500	С6—Н6	0.9500
C2—C3	1.3868 (15)	O1—C13	1.3794 (12)
C2—C7	1.3934 (16)	N2—H2	0.887 (15)
C26—C24	1.5270 (16)	N3—H3A	0.8800
C15—C20—N2	119.16 (9)	C26—C24—H24A	109.5
C19—C20—C15	118.08 (9)	C26—C24—H24B	109.5
C19—C20—N2	122.74 (9)	C26—C24—H24C	109.5
C12—C11—H11	120.3	H24A—C24—H24B	109.5
C13—C11—H11	120.3	H24A—C24—H24C	109.5
C13—C11—C12	119.31 (9)	H24B—C24—H24C	109.5
C19—C18—H18	119.9	С2—С7—Н7	119.9
C17—C18—H18	119.9	C6—C7—C2	120.22 (12)
C17—C18—C19	120.28 (10)	С6—С7—Н7	119.9
C20—C15—H15	119.5	С26—С25—Н25А	109.5
C16—C15—C20	120.96 (10)	C26—C25—H25B	109.5
C16—C15—H15	119.5	С26—С25—Н25С	109.5
C15—C16—H16	119.8	H25A—C25—H25B	109.5
C15—C16—C17	120.31 (9)	H25A—C25—H25C	109.5
C17—C16—H16	119.8	H25B—C25—H25C	109.5
N3—C22—C1	112.76 (8)	C3—C4—H4	119.9
N1—C22—C1	124.98 (9)	C5—C4—C3	120.11 (12)
N1—C22—N3	122.26 (9)	C5—C4—H4	119.9
С9—С10—Н10	119.9	H21A—C21—H21B	109.5
C9—C10—C13	120.25 (10)	H21A—C21—H21C	109.5
C13—C10—H10	119.9	H21B—C21—H21C	109.5
C11—C12—H12	119.2	O2—C21—H21A	109.5
C11—C12—C8	121.63 (10)	O2—C21—H21B	109.5
C8—C12—H12	119.2	O2—C21—H21C	109.5
C20—C19—C18	120.99 (9)	H14A—C14—H14B	109.5
С20—С19—Н19	119.5	H14A—C14—H14C	109.5
C18—C19—H19	119.5	H14B—C14—H14C	109.5
C12—C8—C9	118.01 (9)	O1—C14—H14A	109.5
C12—C8—N1	119.03 (9)	O1—C14—H14B	109.5
C9—C8—N1	122.89 (9)	O1—C14—H14C	109.5
C22—C1—H1	108.1	С4—С5—Н5	120.2
C2—C1—C22	112.85 (8)	C4—C5—C6	119.59 (11)
С2—С1—Н1	108.1	С6—С5—Н5	120.2

N2—C1—C22	110.37 (8)	С26—С23—Н23А	109.5
N2—C1—H1	108.1	С26—С23—Н23В	109.5
N2—C1—C2	109.12 (8)	С26—С23—Н23С	109.5
C18—C17—C16	119.35 (9)	H23A—C23—H23B	109.5
O2—C17—C18	123.94 (10)	H23A—C23—H23C	109.5
02	116.71 (9)	H_{23B} C_{23} H_{23C}	109.5
C10—C9—C8	120.74 (10)	С7—С6—Н6	119.8
С10—С9—Н9	119.6	C5—C6—C7	120.43 (12)
C8—C9—H9	119.6	C5—C6—H6	119.8
$C_{3}-C_{2}-C_{1}$	118,49 (9)	C17 - 02 - C21	116.18 (8)
$C_{3}-C_{2}-C_{7}$	118.73 (10)	$C_{13} - C_{14}$	117.04 (9)
C7-C2-C1	122.78 (10)	$C_{20} - N_{2} - C_{1}$	118 01 (8)
$C_{25} - C_{26} - C_{24}$	109 45 (9)	C_{20} N_{2} H_{2}	112.8 (9)
C_{23} C_{26} C_{24}	111 49 (10)	C1-N2-H2	112.0(9)
C_{23} C_{26} C_{25} C_{25}	109 80 (10)	C^{22} N3 $-C^{26}$	127 34 (9)
N3-C26-C24	110.61 (9)	C22_N3_H3A	116.3
N3-C26-C25	105 50 (9)	C_{26} N3 H3A	116.3
N3-C26-C23	109.82(9)	$C_{20} = N_1 - C_8$	119.35 (9)
$C_2 = C_3 = H_3$	119.62 (5)	C_{11} C_{13} C_{10}	119.95 (9)
$C_2 - C_3 - C_4$	120.89 (11)	01 - C13 - C11	119.90(9) 124.18(9)
$C_2 - C_3 - C_4$	119.6	01 - C13 - C10	124.10(9) 115.85(9)
	117.0		115.65 ())
C20-C15-C16-C17	-0.05 (16)	C9—C8—N1—C22	-72.76 (14)
C11—C12—C8—C9	3.56 (15)	C2-C1-N2-C20	-157.97 (9)
C11—C12—C8—N1	-179.35 (9)	C2—C3—C4—C5	-0.11 (19)
C18—C17—O2—C21	4.27 (15)	C2—C7—C6—C5	-0.7 (2)
C15—C20—C19—C18	-1.56 (16)	C3—C2—C7—C6	-1.07 (19)
C15—C20—N2—C1	166.59 (9)	C3—C4—C5—C6	-1.7 (2)
C15—C16—C17—C18	-1.01 (16)	C24—C26—N3—C22	62.76 (14)
C15—C16—C17—O2	178.62 (9)	C7—C2—C3—C4	1.49 (17)
C16—C17—O2—C21	-175.34 (10)	C25—C26—N3—C22	-178.98 (10)
C22—C1—C2—C3	-145.84 (10)	C4—C5—C6—C7	2.1 (2)
C22—C1—C2—C7	35.00 (14)	C14—O1—C13—C11	3.97 (15)
C22—C1—N2—C20	77.49 (11)	C14—O1—C13—C10	-176.82 (10)
C12—C11—C13—C10	-0.89 (15)	C23—C26—N3—C22	-60.72 (14)
C12—C11—C13—O1	178.29 (9)	N2-C20-C15-C16	179.73 (9)
C12—C8—C9—C10	-2.92 (15)	N2-C20-C19-C18	-179.91 (10)
C12—C8—N1—C22	110.29 (12)	N2—C1—C2—C3	91.07 (11)
C19—C20—C15—C16	1.32 (15)	N2—C1—C2—C7	-88.08 (12)
C19—C20—N2—C1	-15.07 (14)	N3—C22—C1—C2	-87.41 (10)
C19—C18—C17—C16	0.77 (16)	N3—C22—C1—N2	34.97 (11)
C19—C18—C17—O2	-178.83 (10)	N3—C22—N1—C8	-179.30 (9)
C1—C22—N3—C26	-176.49 (9)	N1—C22—C1—C2	92.83 (12)
C1—C22—N1—C8	0.44 (15)	N1—C22—C1—N2	-144.79 (10)
C1—C2—C3—C4	-177.70 (10)	N1—C22—N3—C26	3.28 (16)
C1—C2—C7—C6	178.08 (11)	N1—C8—C9—C10	-179.89 (10)
C17—C18—C19—C20	0.53 (16)	C13—C11—C12—C8	-1.69 (15)
	0.00 (10)	010 011 012 00	1.05 (10)

C9—C10—C13—O1 –177.75 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H…A
N2—H2···O1 ⁱ	0.887 (15)	2.328 (15)	3.1698 (13)	158.5 (12)

Symmetry code: (i) -x+1, -y+2, -z+2.