Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Benzyl-9-isopropyl-9H-purin-6-amine

David Gergela,^a Michal Rouchal,^a Peter Bartoš^b and Robert Vícha^a*

^aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín 762 72, Czech Republic, and ^bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice 625 00, Czech Republic Correspondence e-mail: rvicha@ft.utb.cz

Received 6 May 2013; accepted 16 May 2013

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.058; data-to-parameter ratio = 13.3.

The asymmetric unit of the title compound, $C_{15}H_{17}N_5$, consists of two molecules in which the dihedral angles between the best planes of the purine ring system (r.m.s. deviations = 0.0060 and 0.0190 Å) and the benzene ring are 89.21 (3) and $82.14 (4)^{\circ}$. The molecules within the asymmetric unit are linked into dimers by pairs of N-H···N hydrogen bonds. Weak C-H··· π contacts and π - π interactions [centroidcentroid = 3.3071(1) Å] further connect the molecules into a three-dimensional network.

Related literature

The title compound was prepared according to a modified procedure published by Fiorini & Abel (1998). For the biological activity of 6,9-disubstituted purines, see: Cappellacci et al. (2011); Jorda et al. (2011); Tunçbilek et al. (2009). For crystallographic data for related compounds, see: Novotná & Trávníček (2013); Rouchal et al. (2009a,b); Trávníček et al. (2010).

Experimental

Crystal data

C15H17N5 V = 2823.5 (2) Å³ $M_r = 267.34$ Z = 8Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ a = 12.9926 (5) Å T = 120 Kb = 21.1673(7) Å c = 11.2622 (6) Å $\beta = 114.274(5)^{\circ}$

Data collection

Oxford Diffraction Xcalibur (Sapphire2) diffractometer Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.942, T_{\max} = 1.000$

Refinement

 $0.50 \times 0.38 \times 0.20 \text{ mm}$

21460 measured reflections 4972 independent reflections 3280 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.035$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg4 are centroids of the C10-C15, C30-C35, N1/N2/C1-C4
and N21/N22/C21-C24 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N5 - H5N \cdots N23$ $N25 - H25N \cdots N3$	0.896(13) 0.908(12)	2.129 (11)	2.9883 (13) 3.0088 (15)	160.2(12) 157.2(12)
$C25 - H25 \cdots Cg1$	0.95	2.76	3.6413 (14)	156
$C5 = H5 \cdots Cg2$ $C12 = H12 \cdots Cg3^{i}$	0.95 0.95	2.72 2.93	3.6179 (13) 3.6703 (17)	158 135
$C15-H15\cdots Cg4^{ii}$	0.95	2.60	3.5158 (15)	161

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 2, -y + 1, -z + 2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

The financial support of this work by the Internal Founding Agency of Tomas Bata University in Zlin (project No. IGA/ FT/2013/008) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2482).

References

- Cappellacci, L., Petrelli, R., Franchetti, P., Vita, P., Kusumanchi, P., Kumar, M., Jayram, H. N., Zhou, B., Yen, Y. & Grifantini, M. (2011). Eur. J. Med. Chem. 46, 1499-1504
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fiorini, M. T. & Abel, C. (1998). Tetrahedron Lett. 39, 1827-1830.
- Jorda, R., Sacerdoti-Sierra, N., Volle, J., Havlíček, L., Kráčalíková, K., Nowicki, M. W., Nasereddin, A., Kryštof, V., Strnad, M., Walkinshaw, M. D. & Jaffe, C. L. (2011). Bioorg. Med. Chem. Lett. 21, 4233-4237.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Novotná, R. & Trávníček, Z. (2013). Acta Cryst. E69, 0390.

- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Rouchal, M., Nečas, M., de Carvalho, F. P. & Vícha, R. (2009a). Acta Cryst. E65, 0298-0299.
- Rouchal, M., Nečas, M. & Vícha, R. (2009b). Acta Cryst. E65, o1268.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Trávníček, Z., Popa, I., Čajan, M., Zbořil, R., Kryštof, V. & Mikulík, J. (2010). J. Inorg. Biochem. 104, 405–417.
- Tunçbilek, M., Ateş-Alagöz, Z., Altanlar, N., Karayel, A. & Özbey, S. (2009). Bioorg. Med. Chem. 17, 1693–1700.

supporting information

Acta Cryst. (2013). E69, o954-o955 [doi:10.1107/S1600536813013500]

N-Benzyl-9-isopropyl-9H-purin-6-amine

David Gergela, Michal Rouchal, Peter Bartoš and Robert Vícha

S1. Comment

The synthesis of purine derivatives bearing various substituents at C6 and N9 positions is closely related with the eventual biological activity of the final molecule. Recently, several 6,9-disubstituted purines were described as antibacterial (Tunçbilek *et al.*, 2009), antileishmanial (Jorda *et al.*, 2011) and antitumor (Cappellacci *et al.*, 2011) agents. The title molecule, *N*-benzyl-9-isopropyl-9*H*-purin-6-amine, was prepared as a part of our ongoing research aimed at preparation of new disubstituted purine series.

The asymmetric unit of the title compound consists of two purine-based molecules slightly different in their geometries (Fig. 1). The dihedral angles between the best planes of the purine and benzene rings are 89.21 (3)° and 82.14 (4)°, respectively. The torsion angles N1—C1—N5—C9, C1—N5—C9—C10, N5—C9—C10—C11 and C5—N4—C6—C7 indicating the mutual orientation of substituents and purine ring are 2.85 (19), -110.7 (14), 33.8 (18) and 31.3 (18)°, respectively. The corresponding values of torsion angles for the second conformer are 0.44 (19), -96.7 (15), 35.5 (17) and 35.9 (18)°, respectively. The molecules within the asymmetric unit are linked by N5—H5N…N23 and N25—H25N…N3 hydrogen bonds (Table 1, Fig. 2) to form dimers with dihedral angles between the best planes of the two purines being 32.53 (3)°. In contrast, the benzene rings are essentially parallel with the dihedral angle of 2.88 (3)°. The crystal packing is further stabilized *via* short intermolecular non-bonding C—H… π contacts and π … π interactions (Table 1, Fig. 2). The interplanar distance between the adjacent purine best planes of the π … π stacked molecules is of 3.2583 (13) Å.

S2. Experimental

The title compound was prepared according to a slightly modified literature procedure (Fiorini & Abel, 1998). 6-Chloro-9-isopropyl-9*H*-purine (100 mg, 0.51 mmol) and benzylamine (58 mg, 0.54 mmol) were dissolved in a mixture of DMSO (4 ml) and triethylamine (57 mg, 0.56 mmol). The resulting solution was stirred at 90 °C for 2 h. Subsequently, the mixture was diluted with water and extracted with diethyl ether (7 × 10 ml). The combined organic layers were washed twice with brine, dried over Na₂SO₄ and evaporated in vacuum. The desired product was obtained after the purification of crude material using column chromatography (silica gel; petroleum ether/ethyl acetate, 1/3, v/v) as a colourless crystalline powder (66 mg, 49%, mp 388–391 K). The crystals used for data collection were grown by spontaneous evaporation from deuterochloroform at room temperature.

S3. Refinement

All carbon bound H atoms were placed at calculated positions and were refined as riding with their U_{iso} set to either $1.2U_{eq}$ or $1.5U_{eq}$ (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond. Nitrogen bound H atoms were located in a difference Fourier map and refined isotropically.

Figure 1

An ellipsoid plot of the asymmetric unit with atoms represented as 50% probability ellipsoids. H-atoms are showed as small spheres of arbitrary radii. H-bonds are denoted with dashed lines.

Figure 2

A fragment of the molecular packing. H-atoms have been omitted for clarity with exception to those participating in weak interactions. The red dashed lines denote the H-bonds, the green dashed lines denote the π ··· π interactions and the black dotted lines denote the C—H··· π contacts. *Cg*1, *Cg*2,*Cg*3 and *Cg*4 are respective centers of gravity of C10–C15; C30–C35; C1,N1,C2,N2,C3,C4 and C21,N21,C22,N22,C23,C24 rings. Symmetry codes: i) -*x* + 1, -*y* + 1, -*z* + 2; ii) *x*, *y*, *z* + 1; iii) -*x* + 2, -*y* + 1, -*z* + 2.

N-Benzyl-9-isopropyl-9H-purin-6-amine

Crystal data
$C_{15}H_{17}N_5$
$M_r = 267.34$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 12.9926 (5) Å
<i>b</i> = 21.1673 (7) Å
c = 11.2622 (6) Å
$\beta = 114.274 \ (5)^{\circ}$
$V = 2823.5 (2) \text{ Å}^3$
Z = 8

Data collection Oxford Diffraction Xcalibur (Sapphire2) diffractometer Radiation source: Enhance (Mo) X-ray Source F(000) = 1136 $D_x = 1.258 \text{ Mg m}^{-3}$ Melting point: 390 K Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 6488 reflections $\theta = 2.9-27.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 120 KPyramid, colourless $0.50 \times 0.38 \times 0.20 \text{ mm}$

Graphite monochromator Detector resolution: 8.4353 pixels mm⁻¹ ω scan

Absorption correction: multi-scan	$R_{\rm int} = 0.035$
(CrysAlis RED; Oxford Diffraction, 2009)	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 3.3^\circ$
$T_{\min} = 0.942, \ T_{\max} = 1.000$	$h = -15 \rightarrow 15$
21460 measured reflections	$k = -25 \rightarrow 23$
4972 independent reflections	$l = -13 \rightarrow 10$
3280 reflections with $I > 2\sigma(I)$	
Refinement	
Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_o^2) + (0.0275P)^2]$
$wR(F^2) = 0.058$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.83	$(\Delta/\sigma)_{\rm max} = 0.001$
4972 reflections	$\Delta \rho_{\rm max} = 0.13 \ { m e} \ { m \AA}^{-3}$
373 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
0 restraints	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.48434 (8)	0.47471 (5)	0.65985 (10)	0.0260 (3)	
N2	0.35401 (8)	0.55081 (5)	0.51464 (10)	0.0262 (3)	
N3	0.61994 (8)	0.62964 (5)	0.66899 (10)	0.0313 (3)	
N4	0.44524 (8)	0.65164 (5)	0.51961 (10)	0.0263 (3)	
N5	0.67119 (9)	0.49857 (5)	0.79188 (10)	0.0265 (3)	
C1	0.57003 (10)	0.51658 (6)	0.70266 (12)	0.0241 (3)	
C2	0.38440 (10)	0.49452 (6)	0.57007 (12)	0.0279 (3)	
H2	0.3265	0.4634	0.5419	0.033*	
C3	0.44264 (10)	0.59076 (6)	0.55935 (12)	0.0235 (3)	
C4	0.54997 (10)	0.57782 (6)	0.65076 (11)	0.0235 (3)	
C5	0.55292 (10)	0.67225 (6)	0.58899 (12)	0.0324 (3)	
H5	0.5775	0.7136	0.5804	0.039*	
C6	0.34853 (10)	0.68646 (6)	0.42406 (12)	0.0264 (3)	
H6	0.2996	0.6553	0.3584	0.032*	
C7	0.38698 (11)	0.73471 (7)	0.35260 (13)	0.0440 (4)	
H7A	0.4339	0.7141	0.3146	0.066*	
H7B	0.4310	0.7676	0.4136	0.066*	
H7C	0.3210	0.7538	0.2831	0.066*	
C8	0.27902 (11)	0.71513 (6)	0.48996 (13)	0.0374 (4)	
H8A	0.2602	0.6824	0.5394	0.056*	
H8B	0.2093	0.7329	0.4239	0.056*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H8C	0.3224	0.7487	0.5493	0.056*
С9	0.69743 (10)	0.43519 (6)	0.84296 (12)	0.0275 (3)
H9A	0.7664	0.4207	0.8340	0.033*
H9B	0.6349	0.4068	0.7898	0.033*
C10	0.71588 (10)	0.42924 (6)	0.98378 (12)	0.0226 (3)
C11	0.65661 (10)	0.46597 (6)	1.03600 (13)	0.0289 (3)
H11	0.6031	0.4958	0.9824	0.035*
C12	0.67436 (11)	0.45977 (7)	1.16490 (13)	0.0369 (4)
H12	0.6325	0.4850	1.1992	0.044*
C13	0.75233 (11)	0.41715 (7)	1.24409 (14)	0.0381 (4)
H13	0.7646	0.4131	1.3329	0.046*
C14	0.81238 (11)	0.38046 (6)	1.19388 (14)	0.0363 (4)
H14	0.8666	0.3511	1.2481	0.044*
C15	0.79357 (10)	0.38652 (6)	1.06441 (13)	0.0289 (3)
H15	0.8349	0.3608	1.0302	0.035*
N21	1.00117 (8)	0.72864 (5)	0.95195 (10)	0.0239 (3)
N22	1.08432 (8)	0.68113 (5)	1.16590 (9)	0.0236 (3)
N23	0.87221 (8)	0.57374 (5)	0.96305 (10)	0.0279 (3)
N24	0.99893 (8)	0.57966 (5)	1.17200 (10)	0.0256 (3)
N25	0.85603 (9)	0.68204 (5)	0.77541 (10)	0.0260 (3)
C21	0.92837 (9)	0.68029 (6)	0.90160 (12)	0.0220 (3)
C22	1.07258 (10)	0.72557 (6)	1.07788 (12)	0.0252 (3)
H22	1.1224	0.7605	1.1090	0.030*
C23	1.01033 (9)	0.63394 (6)	1.11174 (12)	0.0214 (3)
C24	0.93237 (9)	0.62980 (6)	0.98385 (12)	0.0215 (3)
C25	0.91468 (10)	0.54632 (6)	1.07785 (13)	0.0310 (3)
H25	0.8889	0.5066	1.0940	0.037*
C26	1.05832 (10)	0.56472 (6)	1.31163 (12)	0.0297 (3)
H26	1.1349	0.5846	1.3442	0.036*
C27	1.07405 (11)	0.49430 (6)	1.33211 (13)	0.0417 (4)
H27A	1.1117	0.4776	1.2791	0.063*
H27B	1.0002	0.4740	1.3062	0.063*
H27C	1.1204	0.4856	1.4243	0.063*
C28	0.99545 (12)	0.59390 (7)	1.38523 (14)	0.0486 (4)
H28A	0.9907	0.6397	1.3718	0.073*
H28B	1.0358	0.5847	1.4783	0.073*
H28C	0.9192	0.5761	1.3532	0.073*
C29	0.85268 (10)	0.73381 (6)	0.68906 (12)	0.0278 (3)
H29A	0.8387	0.7163	0.6023	0.033*
H29B	0.9275	0.7546	0.7232	0.033*
C30	0.76355 (10)	0.78312 (6)	0.67322 (12)	0.0246 (3)
C31	0.73658 (10)	0.79940 (6)	0.77588 (13)	0.0307 (3)
H31	0.7761	0.7802	0.8586	0.037*
C32	0.65295 (11)	0.84318 (6)	0.75992 (14)	0.0376 (4)
H32	0.6350	0.8537	0.8312	0.045*
C33	0.59581 (12)	0.87150 (6)	0.64080 (16)	0.0429 (4)
H33	0.5379	0.9013	0.6295	0.051*
C34	0.62262 (11)	0.85664 (6)	0.53779 (15)	0.0405 (4)

supporting information

H34	0.5840	0.8766	0.4558	0.049*
C35	0.70600 (10)	0.81253 (6)	0.55402 (13)	0.0321 (3)
H35	0.7240	0.8023	0.4827	0.038*
H5N	0.7264 (11)	0.5272 (6)	0.8262 (12)	0.037 (4)*
H25N	0.7954 (10)	0.6558 (6)	0.7491 (12)	0.037 (4)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0217 (6)	0.0304 (6)	0.0255 (6)	-0.0021 (5)	0.0093 (5)	-0.0038 (5)
N2	0.0209 (6)	0.0308 (7)	0.0259 (7)	-0.0027 (5)	0.0087 (5)	-0.0041 (5)
N3	0.0241 (6)	0.0316 (7)	0.0299 (7)	-0.0035 (5)	0.0026 (5)	0.0040 (6)
N4	0.0201 (6)	0.0298 (7)	0.0243 (6)	0.0000 (5)	0.0043 (5)	0.0002 (5)
N5	0.0222 (6)	0.0272 (7)	0.0248 (7)	-0.0012 (5)	0.0045 (5)	0.0000 (5)
C1	0.0220 (7)	0.0327 (8)	0.0194 (8)	-0.0008 (6)	0.0103 (6)	-0.0048 (6)
C2	0.0223 (7)	0.0328 (8)	0.0292 (8)	-0.0045 (6)	0.0114 (6)	-0.0062 (7)
C3	0.0206 (7)	0.0300 (8)	0.0204 (8)	-0.0003 (6)	0.0090 (6)	-0.0034 (6)
C4	0.0213 (7)	0.0280 (8)	0.0198 (8)	-0.0021 (6)	0.0072 (6)	-0.0017 (6)
C5	0.0236 (7)	0.0333 (8)	0.0328 (9)	-0.0048 (6)	0.0042 (6)	0.0021 (7)
C6	0.0214 (7)	0.0328 (8)	0.0201 (8)	0.0026 (6)	0.0036 (6)	-0.0001 (6)
C7	0.0321 (8)	0.0602 (11)	0.0350 (9)	0.0074 (7)	0.0092 (7)	0.0188 (8)
C8	0.0387 (8)	0.0418 (9)	0.0317 (9)	0.0115 (7)	0.0144 (7)	0.0023 (7)
C9	0.0248 (7)	0.0263 (8)	0.0299 (8)	0.0037 (6)	0.0097 (6)	-0.0034 (6)
C10	0.0199 (7)	0.0197 (7)	0.0274 (8)	-0.0027 (6)	0.0089 (6)	-0.0033 (6)
C11	0.0247 (7)	0.0306 (8)	0.0298 (9)	0.0048 (6)	0.0097 (6)	0.0000 (7)
C12	0.0360 (8)	0.0450 (10)	0.0338 (9)	0.0042 (7)	0.0186 (7)	-0.0038 (7)
C13	0.0426 (9)	0.0442 (9)	0.0302 (9)	-0.0042 (7)	0.0176 (7)	0.0040 (7)
C14	0.0370 (8)	0.0307 (9)	0.0387 (10)	0.0045 (7)	0.0132 (7)	0.0126 (7)
C15	0.0289 (7)	0.0216 (8)	0.0379 (9)	0.0034 (6)	0.0154 (7)	0.0014 (6)
N21	0.0202 (6)	0.0243 (6)	0.0270 (7)	0.0002 (5)	0.0094 (5)	-0.0011 (5)
N22	0.0202 (5)	0.0251 (6)	0.0251 (6)	-0.0022 (5)	0.0090 (5)	-0.0015 (5)
N23	0.0248 (6)	0.0261 (6)	0.0273 (7)	-0.0031 (5)	0.0050 (5)	0.0033 (5)
N24	0.0201 (6)	0.0278 (6)	0.0231 (6)	-0.0041 (5)	0.0029 (5)	0.0037 (5)
N25	0.0223 (6)	0.0270 (7)	0.0245 (7)	-0.0016 (5)	0.0054 (5)	0.0042 (5)
C21	0.0164 (6)	0.0249 (7)	0.0256 (8)	0.0030 (6)	0.0097 (6)	-0.0019 (6)
C22	0.0206 (7)	0.0256 (8)	0.0301 (8)	-0.0015 (6)	0.0112 (6)	-0.0043 (7)
C23	0.0168 (6)	0.0228 (7)	0.0246 (8)	0.0011 (5)	0.0086 (6)	0.0005 (6)
C24	0.0173 (6)	0.0224 (7)	0.0235 (8)	0.0001 (5)	0.0071 (6)	0.0006 (6)
C25	0.0251 (7)	0.0281 (8)	0.0323 (9)	-0.0071 (6)	0.0043 (7)	0.0045 (7)
C26	0.0228 (7)	0.0369 (9)	0.0226 (8)	-0.0038 (6)	0.0023 (6)	0.0069 (6)
C27	0.0379 (8)	0.0416 (9)	0.0370 (9)	0.0032 (7)	0.0065 (7)	0.0145 (7)
C28	0.0530 (10)	0.0584 (11)	0.0321 (9)	0.0091 (8)	0.0151 (8)	0.0064 (8)
C29	0.0286 (7)	0.0310 (8)	0.0243 (8)	0.0016 (6)	0.0114 (6)	0.0043 (6)
C30	0.0228 (7)	0.0248 (8)	0.0260 (8)	-0.0036 (6)	0.0099 (6)	0.0011 (6)
C31	0.0299 (7)	0.0313 (8)	0.0298 (8)	-0.0023 (6)	0.0111 (7)	0.0000 (7)
C32	0.0374 (8)	0.0327 (9)	0.0488 (10)	0.0000 (7)	0.0238 (8)	-0.0045 (8)
C33	0.0343 (8)	0.0288 (9)	0.0654 (12)	0.0067 (7)	0.0203 (8)	0.0028 (8)
C34	0.0380 (9)	0.0313 (9)	0.0468 (10)	0.0057 (7)	0.0119 (8)	0.0120 (8)

C35	0.0325 (8)	0.0315 (8)	0.0324 (9)	-0.0007 (6)	0.0136 (7)	0.0053 (7)
Geomet	ric parameters (Å	,)				
N1—C	2	1.3434 (15))]	N21—C22		1.3396 (14)
N1—C	1	1.3476 (15	,) 1	N21—C21		1.3500 (14)
N2—C2	2	1.3276 (15)) 1	N22—C22		1.3291 (14)
N2—C	3	1.3482 (14) 1	N22—C23		1.3460 (14)
N3—C	5	1.3185 (15)) 1	N23—C25		1.3138 (14)
N3—C4	4	1.3851 (14)) 1	N23—C24		1.3869 (14)
N4—C	5	1.3635 (14)) 1	N24—C25		1.3661 (14)
N4—C	3	1.3693 (15)) 1	N24—C23		1.3730 (14)
N4—C	6	1.4725 (14)) 1	N24—C26		1.4733 (14)
N5—C	1	1.3404 (15)) 1	N25—C21		1.3440 (15)
N5-C	9	1.4441 (14) 1	N25—C29		1.4539 (15)
N5—H	5N	0.897 (12)	1	N25—H25N		0.908 (12)
C1—C4	4	1.4017 (16)) (C21—C24		1.4012 (16)
С2—Н	2	0.9500	(С22—Н22		0.9500
C3—C4	4	1.3781 (15)) (C23—C24		1.3815 (15)
С5—Н	5	0.9500	(С25—Н25		0.9500
C6—C′	7	1.5069 (17)) (C26—C27		1.5093 (17)
C6—C8	3	1.5119 (16)) (C26—C28		1.5141 (18)
С6—Н	6	1.0000	(С26—Н26		1.0000
С7—Н	7A	0.9800	(С27—Н27А		0.9800
С7—Н	7B	0.9800	(С27—Н27В		0.9800
С7—Н	7C	0.9800	(С27—Н27С		0.9800
С8—Н	8A	0.9800	(C28—H28A		0.9800
С8—Н	8B	0.9800	(C28—H28B		0.9800
С8—Н	8C	0.9800	(C28—H28C		0.9800
С9—С	10	1.5086 (16)) (С29—С30		1.5141 (16)
С9—Н	9A	0.9900	(С29—Н29А	(0.9900
С9—Н	9B	0.9900	(С29—Н29В	(0.9900
C10-C	C15	1.3811 (16)) (C30—C31		1.3826 (17)
C10-C	C11	1.3842 (16)) (C30—C35		1.3869 (16)
C11—C	212	1.3794 (17)) (C31—C32		1.3825 (17)
C11—H	H11	0.9500	(С31—Н31	(0.9500
C12—C	213	1.3757 (17)) (C32—C33		1.3753 (18)
С12—Н	H12	0.9500	(С32—Н32		0.9500
C13—C	C14	1.3764 (18)) (C33—C34		1.3778 (19)
C13—H	413	0.9500	(С33—Н33		0.9500
C14—C	C15	1.3818 (17)) (C34—C35		1.3841 (17)
C14—H	414	0.9500	(С34—Н34		0.9500
C15—F	115	0.9500	(С35—Н35	(0.9500
C2—N	1—C1	117.70 (11)) (C22—N21—C21		117.94 (11)
C2—N2	2—С3	110.12 (10)) (C22—N22—C23		110.22 (10)
C5—N	3—C4	103.39 (10)) (C25—N23—C24		103.43 (10)
C5-N4	4—С3	105.74 (10)) (C25—N24—C23		105.28 (10)

supporting information

C5—N4—C6	128.68 (11)	C25—N24—C26	128.21 (11)
C3—N4—C6	125.56 (10)	C23—N24—C26	126.27 (10)
C1—N5—C9	124.12 (11)	C21—N25—C29	122.94 (11)
C1—N5—H5N	119.7 (8)	C21—N25—H25N	117.6 (8)
C9—N5—H5N	116.1 (8)	C29—N25—H25N	117.3 (8)
N5-C1-N1	119.51 (12)	N25—C21—N21	119.20 (12)
N5-C1-C4	122.18 (11)	N25—C21—C24	122.67 (11)
N1-C1-C4	118.31 (11)	N21—C21—C24	118.13 (11)
N2-C2-N1	129 98 (12)	N22-C22-N21	129.88 (11)
N2-C2-H2	115.0	N22—C22—H22	115.1
N1-C2-H2	115.0	N21—C22—H22	115.1
N2-C3-N4	126.89 (11)	N22 - C23 - N24	126.80 (11)
$N_2 - C_3 - C_4$	126.94 (12)	N22 - C23 - C24	126.00(11) 126.90(12)
N4 - C3 - C4	106 13 (11)	N24 - C23 - C24	126.96(12) 106.28(10)
$C_3 - C_4 - N_3$	110 75 (11)	C_{23} C_{24} N ₂₃	100.20(10)
$C_3 - C_4 - C_1$	116.93 (11)	$C_{23} = C_{24} = C_{21}$	116.92 (11)
$N_3 - C_4 - C_1$	132 26 (11)	N23 - C24 - C21	110.52(11) 132(52(11))
N3_C5_N4	132.20(11) 113.99(12)	N23 - C25 - N24	132.32(11) 114.45(11)
N3_C5_H5	123.0	N23_C25_H25	122.8
N4_C5_H5	123.0	N24_C25_H25	122.0
N4-C6-C7	111.03 (10)	N24-C26-C27	122.0 110.72 (11)
N4-C6-C8	110.17 (10)	N24 - C26 - C28	109.45(11)
C7 - C6 - C8	112 72 (11)	C_{27} C_{26} C_{28}	112 88 (12)
N4-C6-H6	107.6	N24-C26-H26	107.9
C7—C6—H6	107.6	C_{27} C_{26} H_{26}	107.9
C8—C6—H6	107.6	C_{28} C_{26} H_{26}	107.9
C6-C7-H7A	109.5	$C_{26} = C_{27} = H_{27}$	107.5
C6-C7-H7B	109.5	$C_{26} = C_{27} = H_{27R}$	109.5
H7A - C7 - H7B	109.5	H_{27}^{-} $H_{$	109.5
C6-C7-H7C	109.5	$C_{26} = C_{27} = H_{27}C$	109.5
H7A - C7 - H7C	109.5	$H_{27}^{-} = H_{27}^{-} = H_{$	109.5
H7B-C7-H7C	109.5	H27R - C27 - H27C	109.5
	109.5	$C_{26} C_{28} H_{28A}$	109.5
C6-C8-H8B	109.5	C26-C28-H28B	109.5
H8A - C8 - H8B	109.5	$H_{28} = C_{28} = H_{28B}$	109.5
C6-C8-H8C	109.5	$C_{26} = C_{28} = H_{28}C$	109.5
	109.5	$H_{28} = C_{28} = H_{28} C_{28}$	109.5
	109.5	$H_{28B} = C_{28} = H_{28C}$	109.5
N5 C9 C10	113.04 (10)	N25 C29 C30	109.5 114 18 (11)
N5 C9 H9A	108.8	N25 = C29 = C30	108 7
$C_{10} C_{9} H_{9A}$	108.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.7
N5 C0 H0B	108.8	N25 C29 H29B	108.7
$C_{10} C_{9} H_{9B}$	108.8	(23) (29) (129) (29) (129) (29) (29) (29) (29) (29) (29) (29) (108.7
H9A - C9 - H9B	107.7	$H_{20} = C_{20} = H_{20} = H_{20}$	107.6
C_{15}	118 18 (12)	C_{21} C_{20} C_{35}	107.0 118 45 (12)
$C_{15} - C_{10} - C_{9}$	120.10(12) 120.21(11)	$C_{31} - C_{30} - C_{29}$	121 18(11)
$C_{11} - C_{10} - C_{9}$	120.21 (11)	C_{35} C_{30} C_{29}	121.10(11) 120.36(12)
C_{12} C_{11} C_{10}	120.81 (12)	$C_{32} = C_{30} = C_{23}$	120.30(12) 120.95(13)
U12 U11 U1V	120.01 (12)	$\bigcirc J 2 \bigcirc \bigcirc J 1 \bigcirc \bigcirc$	120.72 (12)

C12—C11—H11	119.6	С32—С31—Н31	119.5
C10—C11—H11	119.6	С30—С31—Н31	119.5
C13—C12—C11	120.31 (13)	C33—C32—C31	119.95 (14)
C13—C12—H12	119.8	С33—С32—Н32	120.0
C11—C12—H12	119.8	С31—С32—Н32	120.0
C12—C13—C14	119.63 (13)	C32—C33—C34	119.99 (13)
С12—С13—Н13	120.2	С32—С33—Н33	120.0
C14—C13—H13	120.2	С34—С33—Н33	120.0
C13—C14—C15	119.79 (13)	C33—C34—C35	119.86 (14)
C13—C14—H14	120.1	С33—С34—Н34	120.1
C15—C14—H14	120.1	С35—С34—Н34	120.1
C10-C15-C14	121.27 (12)	C34—C35—C30	120.79 (13)
C10—C15—H15	119.4	С34—С35—Н35	119.6
C14—C15—H15	119.4	С30—С35—Н35	119.6

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are centroids of the C10–C15, C30–C35, N1/N2/C1–C4 and N21/N22/C21–C24 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N5—H5 <i>N</i> ···N23	0.896 (13)	2.129 (11)	2.9883 (13)	160.2 (12)
N25—H25 <i>N</i> ···N3	0.908 (12)	2.151 (12)	3.0088 (15)	157.2 (12)
C25—H25…Cg1	0.95	2.76	3.6413 (14)	156
C5—H5…Cg2	0.95	2.72	3.6179 (13)	158
C12—H12···Cg3 ⁱ	0.95	2.93	3.6703 (17)	135
C15—H15…Cg4 ⁱⁱ	0.95	2.60	3.5158 (15)	161
Cg3···Cg3 ⁱⁱⁱ			3.3071 (1)	

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+1.